Skip to main content
Log in

Priming for transplant stress resistance in In vitro propagation

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Production of high-quality, vigorous tissue-culture-derived propagules requiles efficient ways for the enhancement of their post-transplanting ability for water management, photosynthesis, and resistance to diseases. Certain molecules, environmental factors, microorganisms, or their parts, can pre-sensitize cellular metabolism of plants, so upon exposure to stress these pre-sensitized, or ‘primed’, plants are able to respond quicker, and to a higher degree than nonprimed, and thus cope better with the challenge. In this review we propose the adoption of the term ‘priming’ for tissue culture propagation and outline the approaches to in vitro propagule priming, based on the changes to the growth enviroment (chemical, physical, and biological) prior to and/or upon transplanting. Major emphasis has been placed on in vitro and ex vitro biopriming (priming with beneficial microorganisms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnihotri, V. P. Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can. J. Microbiol. 16:877–880; 1970.

    PubMed  CAS  Google Scholar 

  • Altomare, C.; Norvell, W. A.; Björkman, T.; Harman, G. E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl. Environ. Microbiol. 65:2926–2933; 1999.

    PubMed  CAS  Google Scholar 

  • Alvarez, M. E. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol. 44:429–442; 2000.

    PubMed  CAS  Google Scholar 

  • Amâncio, S.; Rebordão, J. P.; Chaves, M. M. Improvement of acclimatization of micropropagated grapevine: photosynthetic competence and carbon allocation. Plant Cell Tiss. Organ Cult. 58:31–37; 1999.

    Google Scholar 

  • Ammirato, P. V. Control and expression of morphogenesis in cultures. In: Withers, L. A.; Alderson, P. G. eds. Plant tissue culture and its agricultural applications. London: Butterworths; 1986:23–45.

    Google Scholar 

  • Arshad, M.; Frankenberger, W. T. Jr. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv. Agron. 62:45–151; 1998.

    CAS  Google Scholar 

  • Baccou, J. C. Effect of photosynthesis on the secondary metabolism of cell cultures. In: Carré, F.; Chagvardieff, P. eds Ecophysiology and photosynthetic in vitro cultures, Aix-en-Provence: CEA: 1995:71–85.

    Google Scholar 

  • Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 30: Somatic embryogenesis and synthetic seed I. Berlin Springer-Verlag: 1995.

    Google Scholar 

  • Balachandran, S.; Hurry, V. M.; Kelley, S. E.; Osmond, C. B.; Robinson, S. A.; Rohozinski, J.; Seaton, G. G. R.; Sims, D. A. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from perspective of photosynthesis. Physiol. Plant. 100:203–213; 1997.

    CAS  Google Scholar 

  • Balla, I.; Vertesy, J.; Köves-Pechy, K.; Vërös, L.; Bujtas, Z. Acclimation results of micropropagated black locust (Robina pseudoacacia L.) improved by use of microgranisms. In: Cassells, A. L., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997:351–354.

    Google Scholar 

  • Barka, E. A.; Gognie, S.; Nowak, J.; Audran, J.; Belarbi, A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol. Control. 24:135–142; 2002.

    Google Scholar 

  • Bartolozzi, F.; Mencuccini, M.; Fontanazza, G. Enhancement of frost tolerance in olive shoots in vitro by cold acclimation and sucrose increase in the culture medium. Plant Cell Tiss. Organ Cult. 67:299–302; 2001.

    Google Scholar 

  • Bécard, G.; Fortin, J. A. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 103:211–218; 1988.

    Google Scholar 

  • Bécard, G.; Piché, Y. Fingal growth stimulation by CO2 and root exudates in versicular-arbuscular mycorrhizal symbiosis. Appl. Environ. Microbiol. 55:2320–2325, 1989.

    PubMed  Google Scholar 

  • Benhamou, N. Elicitor-induced plant defence pathways. Trends Plant Sci. 1:233–240; 1996.

    Google Scholar 

  • Bennett, M. A.; Fritz, V. A.; Callan, N. W. Impact of seed treatments on crop stand establishment. Hort Technology 2:345–349; 1992.

    Google Scholar 

  • Bensalim, S.; Nowak, J.; Asiedu, S. K. Temperature and pseudomonad bacterium effects on in vitro and ex vitro performance of 18 clones of potato. Am. J. Potato Res. 75:145–152; 1998.

    Google Scholar 

  • Benson, E. E. In vitro plant recalcitrance: an introduction. In Vitro Cell. Dev. Biol. Plant 36:141–148; 2000.

    Google Scholar 

  • Berrie, A. M. M., Germination and dormancy, In: Wilkins, M. ed. Advanced plant physiology, London: Pitman; 1984:440–468.

    Google Scholar 

  • Berta, G.; Trotta, A.; Fusconi, A.; Hooker, J. E.; Munro, M.; Atkinson, D.; Giovanetti, M.; Morini, S.; Fortuna, P.; Tisserant, B. Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol. 15:281–293; 1995.

    PubMed  Google Scholar 

  • Bethlefalvay, G. J.; Andrade, G.; Azcón-Aquilar, C. Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate-fertilized peas (Pisum sativum L.). Biol. Fertil. Soils 24:164–168; 1997.

    Google Scholar 

  • Bilou, I.; Ocampo, J. A.; Garcia-Garrido, J. M. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J. Exp. Bot. 51:1969–1977; 2000.

    Google Scholar 

  • Bishop, B. H.; Nelson, S. H. Propagation and transplanting of Saskatoon Amelanchire alnifolia Nutt. softwood cuttings. Can. J. Plant Sci. 60:883–890; 1980.

    Google Scholar 

  • Bonanomi, A.; Wiemken, A.; Boller, T.; Salzer, P. Local induction of mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago trancatula containing developing or mature arbascules. Plant Biol. 3:194–199; 2001.

    CAS  Google Scholar 

  • Borsani, O.; Valpuesta, V.; Botella, M. A. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arbidopsis seedlings. Plant Physiol. 126:1024–1030; 2001.

    PubMed  CAS  Google Scholar 

  • Bouchez, D.; Höfte, H. Functional genomies in plants. Plant Physiol. 118:725–732; 1998.

    PubMed  CAS  Google Scholar 

  • Briggs, S. P. Plant genomics: more than food for thought. Proc. Natl Acad. Sci. USA 95:1986–1988; 1998.

    PubMed  CAS  Google Scholar 

  • Brischia, R.; Piccioni, E.; Standardi, A. Micropropagation and synthetic seed in M.26 apple rootstock (II): a new protocol for production of encapsulated diffentiating propagules. Plant Cell Tiss. Organ Cult. 68:137–141; 2002.

    Google Scholar 

  • Brown, M. E. Seed and root bacterization. Annu. Rev. Phytopathol. 12:181–197; 1974.

    CAS  Google Scholar 

  • Burns J. A.; Schwarz, O. J. Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants. Plant Cell Rep. 15:405–408; 1996.

    CAS  Google Scholar 

  • Callan, N. W.; Mathre, D. E.; Miller, J. B.; Vavrina, C. S.: Biological seed treatments: factors involved in efficacy. Hort. Sci. 32:179–183; 1997.

    Google Scholar 

  • Carvalho, L. C.; Osório, M. L.; Chaves, M. M.; Amâncio, S. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tiss. Organ Cult. 67:271–280; 2001.

    Google Scholar 

  • Cassells, A. C. Problems in tissue culture: culture contamination. In: Debergh, P. C.; Zimmerman, R. M. eds. Micropropagation, technology and application. Dordrecht: Kluwer Academic Publishers; 1991:31–44.

    Google Scholar 

  • Chang, P.-F. L.; Xu, Y.; Narasimhan, M. L.; Chea, K. T.; D'Urzo, M. P.; Damsz, B.; Kononowicz, A. K.; Abad, L.; Hasegawa, P. M.; Bressan, R. A. Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stable Trichoderma mycelial extract and plant signal messengers. Physiol. Plant. 100:341–352; 1997.

    CAS  Google Scholar 

  • Chang, Y.; Reed, B. M. Preculture conditions influence cold hardiness and regrowth of Pyrus cordata shoot tips after eryopreservation. Hort. Sci. 36:1329–1333; 2001.

    CAS  Google Scholar 

  • Chanway, C. P. Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. Forest Sci. 43:99–112; 1997.

    Google Scholar 

  • Chávez, M. C. G.; Ferrera-Cerrato, R. Effect of vesicular-arbuscular mycorrhizae on tissue culture-derived plantlets of strawberry. Hort. Sci. 25:903–905; 1990.

    Google Scholar 

  • Chen, C.; Bauske, E. M.; Musson, G.; Rodriquez-Kábana, R.; Kloepper, J. W. Biological control of fusarium wilt on cotton by use of endophytic bacteria. Biol. Control 5:83–91; 1995.

    Google Scholar 

  • Cheong, Y. H.; Chang, H.-S.; Gupta, R.; Wang, X.; Zhu, T.; Luan, S. Transcriptional profiling reveals novel interactions between wounding pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129:661–677; 2002.

    PubMed  CAS  Google Scholar 

  • Conn, K. L.; Nowak, J.; Lazarovits, G. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can. J. Microbiol. 43:801–808; 1997.

    CAS  Google Scholar 

  • Conrath, U.; Pieterse, C. M. J.; Mauch-Mani, B. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210–216; 2002.

    PubMed  CAS  Google Scholar 

  • Cordier, C.; Lemoine, M. C.; Lemanceau, P.; Gianinazzi-Pearson, V.; Gianizazzi, S. The beneficial rhizosphere: a necessary strategy for microplant production. Acta Hort. 530:259–268; 2000.

    Google Scholar 

  • Cournac, L.; Cirier, I.; Chagvardieff, P. Improvement of photoautotrophic Solanum tuberosum plantlet culture by light and CO2: differential development of photosynthetic characteristics and varietal constraits. Acta Hort., 319:53–58; 1992.

    Google Scholar 

  • Cournac, L.; Dimon, B.; Carrier, P.; Lohou, A.; Chagvardieff, P. Growth and photosynthetic characteristics of Solanum tuberosum plantets cultivated in vitro in different conditions of aeration, sucrose supply and CO2 enrichment. Plant Physiol. 97:112–117; 1991.

    PubMed  CAS  Google Scholar 

  • Creus, C. M.; Sueldo, R. J.; Barassi, C. A. Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can. J. Bot. 76:238–244; 1998.

    Google Scholar 

  • Gui, Y.-Y.; Hahn, E.-J.; Kozai, T.; Paek, K.-Y., Number of air exchanges, sucross concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehumannia glutinosa plantlets in vitro. Plant Cell Tiss. Organ Cult. 62:219–226; 2000.

    Google Scholar 

  • Cyr, D. R. Seed substitutes from the laboratory. In: Black, M.; Bewley, J. D., eds. Seed technology and its biological basis. Sheffield: Sheffield Academic Press; 2000:326–372.

    Google Scholar 

  • Dat, J. F.; Lopez-Delgado, H.; Foyer, C.; Scott, I. M. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant. Physiol. 116:1351–1357; 1998.

    PubMed  CAS  Google Scholar 

  • Datnoff, L. E.; Nemec, S.; Pernezny, K. Biological control of fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol. Control 5:427–431; 1995.

    Google Scholar 

  • De Klerk, G. J.; Keppel, M.; Brugge, J. T.; Meekes, H. Timing of the phases in adventitious root formation in apple microcuttings. Plant Cell Tiss. Organ Cult. 46:965–972; 1995.

    Google Scholar 

  • De Klerk, G. J.; ter Brugge, J.; Maarinova, S. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’. Plant Cell Tiss. Organ Cult. 49:39–44; 1997.

    Google Scholar 

  • De Meyer, G.; Audenaert, K.; Höfte, M. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in-planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105:513–517; 1999.

    Google Scholar 

  • De Meyer, G.; Höfte, M. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593; 1997.

    PubMed  Google Scholar 

  • Debergh, P.; Aitken-Christie, J.; Cohen, D.; Grout, B.; von Arnold, S.; Zimmerman, R.; Ziv, M. Reconsideration of the term vitrification as used in micropropagation. Plant Cell Tiss. Organ Cult. 30:135–140; 1992.

    Google Scholar 

  • Debergh, P. C.; Read, P. E. Micropropagation. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation technology and applications. Dordrecht: Kluwer Academic Publishers; 1991:1–13.

    Google Scholar 

  • Delseny, M.; Salses, J.; Cooke, R.; Sallaud, C.; Regad, F.; Lagoda, P.; Guideroni, E.; Ventelon, M.; Brugidou, C.; Ghesquière, A. Rice genomics: present and future. Plant Physiol. Biochem. 39:323–334; 2001.

    Google Scholar 

  • Deng, R.; Donelly, D. J. In vitro hardening of red raspberry through CO2 enrichment and relative humidity reduction on sugar-free medium. Can. J. Plant Sci. 73:1105–1113; 1993.

    CAS  Google Scholar 

  • Desjardins, Y. Overview of factors influencing photosynthesis of micropropagated plantlets and their effect on acclimatization. In: Carré, F.; Chagvardieff, P., eds. Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence: CEA: 1995:145–160.

    Google Scholar 

  • Desjardins, Y.; Hdider, C.; de Riek, J. Carbon nutrition in vitro—regulation and manipulation of carbon assimilation in micropropagated systems. In: Aitken-Christie, J.; Kozai, T.; Smith, M. L., eds. Automation and environmental control in plant tissue culture. Dordrecht: Kluwer Academic Publishers; 1994:441–471.

    Google Scholar 

  • Dixon, R. A.; Harrison, M. J.; Lamb, C. F. Early events in the activation of plant defence responses. Annu. Rev. Phytopathol. 32:479–501; 1994.

    CAS  Google Scholar 

  • Dobrev, P.; Motyka, V.; Gaudinová, A.; Malbeck, J.; Trávníčková, A.; Kamínek, M.; Vaňková, R. Transient accumulation of cis-and trans-zeatin type cytokinins and its relation to cytokinin oxidase activity during cell cycle of synchronized tobacco BY-2 cells. Plant Physiol. Biochem. 40:333–337; 2002.

    CAS  Google Scholar 

  • Dong, Z.; Heidrich, M.; Bernard, K.; McCully, M. E. Further evidence that the N2-fixing endophytic bacterium from the intercellular spaces of sugarcane stems is Acetobacter diazotrophicus.Appl. Environ. Microbiol. 61:1843–1846; 1995.

    PubMed  CAS  Google Scholar 

  • Dong, Z.; Layzell, D. B. Why do legume nodules evolve hydrogen gas? In: Finan, T.; O'Brian, M.; Layzell, D.; Vessey, K.; Newton, W., eds. Nitrogen fixation, global perspectives. New York: CABI Publishing: 2002:331–335.

    Google Scholar 

  • Donnelly, D. J.; Tisdall, L. Acclimatization strategies for micropropagated plats. In: Ahuja, M. R., ed. Micropropagation of woody plants. Forestry Sci., 41:153–166; 1993.

  • Doubrava, N. S.; Dean, R. A.; Kue, J. Induction of systemic resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves. Physiol. Mol. Plant Pathol. 33:69–79; 1988.

    CAS  Google Scholar 

  • Dowling, D. N.; O'Gara, F. Metabolites of Pseudomonas involved in the biocontrol of plant diseases. Trends Biotechnol. 12:133–141; 1994.

    CAS  Google Scholar 

  • Duffy, E. M.; Hurley, E. M.; Cassells, A. C. Weaning performance of potato microplants following bacterization and mycorrhization. Potato Res. 42:521–527; 1999.

    Google Scholar 

  • Dumas, E.; Monteuuis, O. In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explants: influence of activated charcoal. Plant Cell Tiss. Organ Cult. 40:231–235; 1995.

    Google Scholar 

  • Dunbar, C. Utilization of seaweed extract and plant growth promoting rhizobacterium in greenhouse production of potato minitubers, M.Sc. thesis, Dalhousie University, Halifax, NS, Canada; 1997.

    Google Scholar 

  • Elmeskaoui, A.; Damont, J.-J. P.; Piché, Y.; Desjardins, Y. A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5:313–319; 1995.

    Google Scholar 

  • Enebak, S. A.; Wei, G.; Kloepper, J. W. Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings. Forest Sci. 44:139–144; 1998.

    Google Scholar 

  • Enyedi, A. J.; Yalpani, N.; Silverman, P.; Raskin, I. Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886; 1992.

    PubMed  CAS  Google Scholar 

  • Estrada-Luna, A. A.; Davies, F. T. Jr.; Egilla, J. N. Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10:1–8; 2000.

    CAS  Google Scholar 

  • Estrada-Luna, A. A.; Davies, F. T. Jr.; Egilla, J. N. Growth, gas exchange, and water relations of micropropagated chile ancho pepper (Capsicum annuum L. cv. San Luis) plantlets during acclimatization and post-acclimatization. Hort. Sci. 35–426; 2001.

  • Fortin, J. A.; Bécard, G.; Declerck, S.; Dalpé, Y.; St-Arnaud, M.; Coughlan, A. P.; Piché, Y. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80:1–20; 2002.

    CAS  Google Scholar 

  • Founoune, H.; Duponnois, R.; Bâ, A. M.; Sall, S.; Branget, I.; Lorquin, J.; Neyra, M.; Chotte, J. L. Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol. 153:81–89; 2002.

    Google Scholar 

  • Franceschi, V. R.; Krekling, T.; Christiansen, E. Application of methyl jasmonate on Ipicea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot. 89:578–586; 2002.

    CAS  Google Scholar 

  • Friedrich, L.; Lawton, K.; Ruess, W.; Masner, P.; Specker, N.; Gut Rella, M.; Meier, B.; Dincher, S.; Staub, T.; Uknes, S.; Métraux, J.-P.; Kessmann, H.; Ryals, J. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10:61–70; 1996.

    CAS  Google Scholar 

  • Frommel, M. I.; Nowak, J.; Lazarovits, G. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol. 96:928–936; 1991a.

    PubMed  CAS  Google Scholar 

  • Frommel, M. I.; Nowak, J.; Lazarovits, G. Treatment of potato tubers with a growth promoting Pseudomonas sp., bacterium distribution in the rhizosphere and plant growth responses. Plant Soil 150:51–60; 1993.

    Google Scholar 

  • Frommel, M. I.; Pazos, G. S.; Nowak, J. J. Plant-growth stimulation and biocontrol of Fusarium wilt by co-inoculation of tomato seeds with Serratia plymuthica and Pseudomonas sp. Fitopathologia 26:66–73; 1991b.

    Google Scholar 

  • Fujii, J. A. A.; Slade, D.; Redenbaugh, K. Planting artificial seeds and somatic embryos. In: Redenbaugh, K., ed. Synseeds. Applications of synthetic seeds to crop improvement. Boca Raton, FL: CRC Press; 1993:183–228.

    Google Scholar 

  • Fujiwara, K.; Kozai, T. Control of environmental factors for plantlet production—with some mathematical simulation. In: Carre, F.; Chagvardieff, P., eds. Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence: CEA; 1995:109–120.

    Google Scholar 

  • Ganesan, V.; Thomas, G. Salicylic acid response in rice: influence of salicylic acid in H2O2 accumulation and oxidative stress. Plant Sci. 160:1095–1106; 2001.

    PubMed  CAS  Google Scholar 

  • Garbaye, J. Helper bacteria: a new dimention to the mycorrhizal symbiosis. New Phytol. 128:197–210; 1994.

    Google Scholar 

  • Garcia-Garrido, J. M.; Ocampo, J. A. Regulation of the plant defence response in arbascular mycorrhizal symbiosis.J. Exp. Bot. 53:1377–1386; 2002.

    PubMed  CAS  Google Scholar 

  • Garin, È.; Bernier-Cordou, M.; Isabel, N.; Klimaszewska, K.; Plourde, A. Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell Tiss. Organ Cult. 62:27–37; 2000.

    CAS  Google Scholar 

  • Gaudin, V.; Vrain, T.; Jouanin, L. Bacterial genes modifying hormonal balances in plants. Plant Physiol. Biochem. 32:11–29; 1994.

    CAS  Google Scholar 

  • Glick, B. R. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41:109–117; 1995.

    Article  CAS  Google Scholar 

  • Glick, B. R.; Bashan, Y. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15:353–378; 1997.

    PubMed  CAS  Google Scholar 

  • Glick, B. R.; Penrose, D. M.; Li, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190:63–68; 1998.

    PubMed  CAS  Google Scholar 

  • Görlach, J.; Volrath, S.; Knauf-Beiter, G.; Hengy, G.; Beckhove, U.; Kogel, K.-H.; Oostendorp, M.; Staub, T.; Ward, E.; Kessmann, H.; Ryals, J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643; 1996.

    PubMed  Google Scholar 

  • Gribaudo, I.; Morte, M. A.; Schubert, A. Use of gentian violet to differentiate in vitro and ex vitro-formed roots during acclimatization of grapevine. Plant Cell Tiss. Organ Cult. 41:187–188; 1995.

    Google Scholar 

  • Gribaudo, I.; Novello, V.; Restango, M. Improved control of water loss in micropropagated plants of Vitis vinifera cv. Nebbiolo. Vitis 40:137–140; 2001.

    CAS  Google Scholar 

  • Gribaudo, I., Restango, M., Novello, V. Vented vessels affect growth rate of in vitro Vitis vinifera cv. Nebbiolo. Proc. 1st Symp. on Acclimatization and Establishment of Micropropagated Plants, Sani-Halkidiki, Greece, September 19–22, 2001; 2002 (in press).

  • Grotkass, C.; Hutter, I.; Feldmann, F. Use of arbuscular mycorrhizal fungi to reduce weaning stress of micropropagated Baptisia tinctoria (L.). R. Br. Acta Hort. 530:305–312; 2000.

    Google Scholar 

  • Hall, J. A.; Peterson, D.; Ghosh, S.; Gliek, B. R. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Israel J. Plant Sci. 44:37–42; 1996.

    Google Scholar 

  • Hallmann, J.; Quadt-Hallmann, A.; Mahaffee, W. F.; Kloepper, J. W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895–914; 1997.

    CAS  Google Scholar 

  • Hammatt, N. Promotion by phloroglucinol of adventitious root formation in micropropagated shoots of adult wild cherry (Prunus avium L.). Plant Growth Regul. 14:127–132; 1994.

    CAS  Google Scholar 

  • Harmon, A. C. The calcium connection. Trends Plant Sci. 2:121–122; 1997.

    Google Scholar 

  • Harris, R. E. Saskatoons (Amelanchier alnifolia Nutt.). Proc. Western Can. Soc. Hort. 32:50–59; 1976.

    Google Scholar 

  • Harris, R. E. Propagation of Amelanchier, Amelanchier alnifolia cv. Smoky in vitro. Proc. Can. Hort. Soc. 19:32–34; 1980.

    Google Scholar 

  • Hdider, C.; Desjardins, Y. Effects of sucrose on photosynthesis and phosphoenolopyruvate carboxylase activity in in vitro cultured strawberry plantlets. Plant Cell Tiss. Organ Cult. 36:27–33; 1994.

    CAS  Google Scholar 

  • Hebe, G.; Hager, A.; Salzer, P. Initial signalling processes induced by elicitors of ectomycorrhiza-forming fungi in spruce cells can also be triggered by G-protein-activating mastoparan and protein phosphatase-inhibiting cantharidin. Planta 207:418–425; 1999.

    CAS  Google Scholar 

  • Herman, E. B. Contaminants promote potato micropropagation. Agricell Rep. 9:38; 1987.

    Google Scholar 

  • Herman, E. B. Beneficial effects of bacteria and fungi on plant tissue cultures. Agricell Rep. 27:26–27; 1996a.

    Google Scholar 

  • Herman, E. B. Microbial contamination of plant tissue cultures. Recent Advances in Plant Tissue Culture IV. Shrub Oak, NY: Agritech Cons., Inc.; 1996b.

    Google Scholar 

  • Herms, S.; Seehaus, K.; Koehle, H.; Conrath, U. A strobulin fungicide enhances the resistance of tobacco against Tobacco Mosaic Virus and Pseudomonas syringae pv tobaci. Plant Physiol. 130:120–127; 2002.

    PubMed  CAS  Google Scholar 

  • Hooker, J. E.; Gianinazzi, S.; Vestberg, M.; Barea, J. M.; Atkinson, D. The application of arbuscular mycorrhizal fungi to micropropagation systems: an opportunity to reduce chemical inputs. Ag. Sci. Finland 3:227–232; 1994.

    Google Scholar 

  • Hooker, T. S.; Thorpe, T. A. Effects of fluridone and abscisic acid on lateral root initiation and root elongation of excised tomato roots cultured in vitro. Plant Cell Tiss. Organ Cult. 52:199–203; 1998.

    CAS  Google Scholar 

  • Hoque, A.; Arima, S. Overcoming phenolic accumulation during callus induction and in vitro organogenesis in water chestnut (Trapa japonica Frelov). In Vitro Cell. Dev. Biol. Plant 38:342–346; 2002.

    CAS  Google Scholar 

  • Howard, B. H.; Marks, T. R. The in vitro-in vivo interface. In: Jackson, M. B.; Mantell, S. H.; Blake, J., eds. Advances in chemical manipulation of plant tissue cultures. British Plant Growth Regulator Group, monograph no. 16. Bristol: BSPGR; 1987:101–111.

    Google Scholar 

  • Huang, Y. F.; Chen, C. T.; Kao, C. H. Salicylic acid inhibits the biosynthesis of ethylene in detached rice leaves. Plant Growth Regul. 12:79–82; 1993.

    CAS  Google Scholar 

  • Hugenholtz, P.; Pace, N. R. Identifying microbial diversity in the natural environment, a molecular phylogenetic approach. Trends Biotechnol. 14:190–197; 1996.

    PubMed  CAS  Google Scholar 

  • Hunt, M. D.; Ryals, J. A. Systemic acquired resistance signal transduction. Crit. Rev. Plant Sci. 15:583–606; 1996.

    CAS  Google Scholar 

  • Hurek, T.; Handley, L. L.; Reinhold-Hurek, B.; Piché, Y. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Am. Phytopathol. Soc. 15:233–242; 2002.

    CAS  Google Scholar 

  • Hussain, S.; Lane, S. D.; Price, D. N. A preliminary evaluation of the use of microbial culture filtrates for the control of contaminants in plant tissue culture systems. Plant Cell Tiss. Organ Cult. 36:45–51; 1994.

    Google Scholar 

  • Illmer, P.; Schinner, F. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem. 27:257–263; 1992.

    Google Scholar 

  • Ingram, B.; Mavituna, F. Effect of bioreactor configuration on the growth and maturation of Picea sitchensis somatic embryo cultures. Plant Cell Tiss. Organ Cult. 61:87–96; 2000.

    Google Scholar 

  • Jackson, A. J.; Walters, D. R.; Marshall, G. Antagonistic interactions between the foliar pathogen Botrytis fabae and isolates of Penicillium brevicompactum and Cladosporium cladosporioides on faba beans. Biol. Control 8:97–106; 1997.

    Google Scholar 

  • Jackson, M. B.; Abbott, A. J.; Belcher, A. R.; Hall, K. C.; Butler, R.; Cameron, J. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 67:229–237; 1991.

    CAS  Google Scholar 

  • Jacobs, M. J.; Bugbe, W. M.; Gabrielson, D. A. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63:1262–1265; 1985.

    Article  Google Scholar 

  • Jakab, G.; Cottier, V.; Toquin, V.; Rigoli, C.; Zimmerli, L.; Métraux, J.-P.; Mauch-Mani, B. β-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29–37; 2001.

    CAS  Google Scholar 

  • Janick, J.; Kim, Y.-H.; Kitto, S.; Saranga, Y. Dessicated synthetic seed. In: Redenbaugh, K., ed. Synseeds. Applications of synthetic seeds to crop improvement. Boca Raton, FL: CRC Press; 1993:11–33.

    Google Scholar 

  • Jayasankar, S.; Bondada, B. R.; Li, Z.; Gray, D. J. A unique morphotype of grapevine somatic embryos exhibits accelerated germination and early plant development. Plant Cell Rep. 20:907–911; 2002.

    CAS  Google Scholar 

  • Jeong, B. R.; Fujiwara, K.; Kozai, T. Environmental control and photoautotrophic micropropagation. Hort. Rev. 17:125–172; 1995.

    Google Scholar 

  • Johnson-Flanagan, A. M.; Huiven, Z.; Thiagarajah, M. R.; Saini, H. S. Role of abscisic acid in the induction of freezing tolerance in Brassica napus suspension-cultured cells. Plant Physiol. 95:1044–1048; 1991.

    PubMed  CAS  Google Scholar 

  • Kadota, M.; Hirano, T.; Imizu, K. Pyroligneous acid improves in vitro rooting of Japanese pear cultivars. Hort. Sci. 37:194–195; 2002.

    CAS  Google Scholar 

  • Kauss, H.; Theisinger-Hinkel, E.; Mindermann, R.; Conrath, U. Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J. 2:655–660; 1992.

    CAS  Google Scholar 

  • Kessmann, H.; Staub, T.; Hofmann, T. M.; Herzog, J. Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol. 32:439–459; 1994.

    CAS  PubMed  Google Scholar 

  • Kevers, C.; Coumans, M.; Coumans-Gilles, M. F.; Gaspar, Th. Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol. Plant. 61:69–74; 1984.

    CAS  Google Scholar 

  • Klarzynski, O.; Plesse, B.; Joubert, J.-M.; Yvin, J.-C.; Kopp, M.; Kloareg, B.; Fritig, B. Linear β-1,3 glucans are elicitors of defence responses in tobacco. Plant Physiol. 124:1027–1037; 2000.

    PubMed  CAS  Google Scholar 

  • Kling, G. J.; Meyer, M. M., Jr. Effects of phenolic compounds and indoleacetic acid on adventitious root initiation in cuttings of Phaseolus aureus, Acer saccharinum, and Acer griseum. Hort. Sci. 18:352–354; 1983.

    CAS  Google Scholar 

  • Kloepper, J. W.; Tuzun, S.; Zehnder, G. W.; Wei, G. Multiple disease protection by rhizobacteria that induce systemic resistance—historical perspective. Phytopathology 87:136–137; 1997.

    PubMed  CAS  Google Scholar 

  • Kogel, K. H.; Beckhove, U.; Dreschers, J.; Munch, S.; Romme, Y. Acquired resistance in barley (the resistance mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance). Plant Physiol. 106:1269–1277; 1994.

    PubMed  CAS  Google Scholar 

  • Koo, J. C.; Lee, S. Y.; Chun, H. J.; Cheong, Y. H.; Choi, J. L.; Kawabata, S.; Miyagi, M.; Tsunasawa, S.; Ha, K. S.; Bae, D. W. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta 1382:80–90; 1998.

    PubMed  CAS  Google Scholar 

  • Kowalski, B.; Jeger, A. K.; Van Staden, J. The effect of seaweed concentrate on the in vitro growth and acclimatization of potato plantlets. Potato Res. 42:131–139; 1999.

    Google Scholar 

  • Kozai, T. Micropropagation under photoautotrophic conditions. In: Debergh, P. C.; Zimmerman, R. M., eds. Micropropagation, technology and application. Dordrecht: Kluwer Academic Publishers: 1991:447–469.

    Google Scholar 

  • Kozai, T.; Kubota, C.; Jeong, B. R. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tiss. Organ Cult. 51:49–56; 1997.

    Google Scholar 

  • Kozai, T.; Watanabe, K.; Jeong, B. R. Stem elongation and growth of Solanum tuberosum L. in vitro in response to photosynthetic photon flux, photoperiod and difference in photoperiod and dark period temperatures. Sci. Hortic. 64:1–9; 1995.

    Google Scholar 

  • Ku, S.-B.; Edwards, G. E.; Tanne, C. B. Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in Solanum tuberosum. Plant Physiol. 59:868–872; 1977.

    PubMed  CAS  Google Scholar 

  • Kunkel, B. N.; Brooks, D. M. Cross talk between signaling pathways in pathogen defence. Curr. Opin. Plant Biol. 5:325–331; 2002.

    PubMed  CAS  Google Scholar 

  • Lagudah, E. S.; Dubcovsky, J.; Powell, W. Wheat genomics. Plant Physiol. Biochem. 39:335–344; 2001.

    CAS  Google Scholar 

  • Lambais, M. R. Regulation of plant defence-related genes in arbascular mycorrhizae. In: Podila, G. K.; Douds, D. D., eds. Current advances in mycorrhizae research. St. Paul, MN: American Phytopathological Society Press: 2000:45–60.

    Google Scholar 

  • Landgraf, P.; Feussner, I.; Hunger, A.; Scheel, D.; Rosahl, S. Systemic accumulation of 12-oxo-phytodienoic acid in SAR-induced potato plants. Eur. J. Plant Pathol. 108:279–283; 2002.

    CAS  Google Scholar 

  • Lawton, K.-A.; Friedrich, L.; Hunt, M.; Weymann, K.; Delaney, T.; Kessmann, H.; Staub, T.; Ryals, J. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71–82; 1996.

    PubMed  CAS  Google Scholar 

  • Lazarovits, G.; Nowak, J. Rhizobacteria for improvement of plant growth and establishment. Hort. Sci. 32:188–192; 1997.

    Google Scholar 

  • Lee, E.-K.; Cho, D.-Y.; Soh, W.-Y. Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep. 20:408–415; 2001.

    CAS  Google Scholar 

  • Lee, N.; Wetzstein, H. Y. Quantum flux density effects on the anatomy and surface morphology of in vitro and in vivo developed sweetgum leaves. J. Am. Soc. Hort. Sci. 113:167–171; 1988.

    Google Scholar 

  • Leifert, C.; Morris, C. E.; Waites, W. M. Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: reasons for contamination problems in vitro. Crit. Rev. Plant Sci. 13:139–183; 1994.

    Google Scholar 

  • Leifert, C.; Murphy, K. P.; Lumsden, P. J. Mineral and carbohydrate nutrition of plant cell and tissue cultures. Crit. Rev. Plant Sci. 14:83–109; 1995.

    CAS  Google Scholar 

  • Leon, G.F. de; Larqué-Saavedra, A. Stomatal closure in the presence of acetylsalicylate is dependent on hydrogen ion concentration (original title: Cierre estomatal inducido por aspirina y su dependencia del pH). Agrociencia 37:67–75; 1979.

    Google Scholar 

  • Levin, R.; Stav, R.; Alper, Y.; Watad, A. A. A technique for repeated non-axenic sub-culture of plant tissues in a bioreactor on liquid medium containing sucrose. Plant Tiss. Cult. Biotechnol. 3:41–45; 1997.

    Google Scholar 

  • Li, J.; Ovakim, D. H.; Charles, T. C.; Gliek, B. R. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41:101–105; 2000.

    PubMed  CAS  Google Scholar 

  • Lifshitz, R.; Kloepper, J. W.; Kozlowski, M.; Simpson, C.; Carlson, J.; Tipping, E. M.; Zaleska, I., Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390–395; 1987.

    Article  Google Scholar 

  • Liu, Z.; Pillay, V.; Nowak, J. In vitro culture of watermelon and cantaloupe with and without beneficial bacterium. Acta Hortic. 402:58–60; 1995.

    Google Scholar 

  • Lopez-Delgado, H.; Rubi-Covarrubias, O.; Cadena-Hinojosa, M. Induction of thermotolerance in potato microplants by salicylic acid during in vitro thermotherapy. Abstracts of the XXVIth Int. Horticultural Congress and Exhibition, August 11–17, 2002, Toronto, Ontario, Canada, S03-P-26:114.

  • Lubraco, G.; Schubert, A.; Previati, A. Micropropagation and mycorrhization of Allium sativum. Acta Hort 530:339–344; 2000.

    Google Scholar 

  • Lynch, D. R.; Coleman, M. C.; Lyon, G. D. Effect of Alternaria solani culture filtrate on adventitious shoot regeneration in potato. Plant Cell Rep. 9:607–610; 1991.

    Google Scholar 

  • Lynch, J. M., ed. The rhizosphere. Chichester: Wiley; 1990.

    Google Scholar 

  • Ma, W.; Sebastianova, S. B.; Sebastian, J.; Burd, G. I.; Guinel, F. C.; Glick, B. R. Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobia spp. Antonie v. Leeuwenhoek J. (in press); 2003.

  • MacLeod, K.; Nowak, J. Glass beads as an alternative solid matrix in plant tissue culture. Plant Cell Tiss. Organ Cult. 22:113–117; 1990.

    CAS  Google Scholar 

  • Maier, W.; Schmidt, J.; Wray, V.; Walter, M. H.; Strack, D. The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots. Planta 207:620–623; 1999.

    CAS  Google Scholar 

  • Majada, J. P.; Fal, M. S.; Sánchez-Tamés, R. Influence of the in vitro environment on the stomatal physiology and morphology of micropropagated Dianthus caryophyllus cv. Nelken. In: Carre, F.; Chagvardieff, P., eds. Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence: CEA: 1995:141–144.

    Google Scholar 

  • Majada, J. P.; Fal, M. A.; Tadeo, F.; Sánchez-Tamés, R. Effects of natural ventilation on leaf ultrastructure of Dianthus caryophyllus L. cultured in vitro. In Vitro Cell. Dev. Biol. Plant 39:272–278; 2002.

    Google Scholar 

  • Majada, J. P.; Tadeo, F.; Fal, M. A.; Sánchez-Tamés, R. Impact of culture vessel ventilation on the anatomy and morphology of micropropagated carnation. Plant Cell Tiss. Organ Cult. 63:207–214; 2000.

    Google Scholar 

  • Mamiya, K.; Sakamoto, Y. A method to produce encapsulatable units for synthetic seeds in Asparagus officinalis. Plant Cell Tiss. Organ Cult. 64:27–32; 2001.

    CAS  Google Scholar 

  • Marks, T. R.; Simpson, S. E. Interaction of explant type and indole-3-butyric acid during rooting in vitro in a range of difficult and easy-to-root woody plants. Plant Cell Tiss. Organ Cult. 62:65–74; 2000.

    CAS  Google Scholar 

  • Matthijs, D. G.; Pascat, B.; Demeester, J.; Christiaens, K.; Debergh, P. C. Factors controlling the evolution of the gaseous atmosphere during in vitro culture. In: Carre, F.; Chagvardieff, P., eds., Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence: CEA: 1995:129–140.

    Google Scholar 

  • Mayak, S.; Tirosh, T.; Glick, B. R. Stimulation of the growth of tomato, pepper and mung bean plants by the plant growth-promoting bacterium. Enterobacter cloacae CAL3. Biol. Agric. Hort. 19:261–274; 2001.

    Google Scholar 

  • McAfee, B. J.; White, E. E.; Pelcher, L. E.; Lapp, M. S. Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tiss. Organ Cult. 34:53–62; 1993.

    Google Scholar 

  • McClelland, M. T.; Smith, M. A. L. Vessel type, closure, and explant orientation influence in vitro performance of five woody-species. Hort. Sci. 25:797–800; 1990.

    Google Scholar 

  • McCown, B. H. Plug systems for micropropagules. In: Zimmerman, R. H.; Griesbach, R. J.; Hammerschlag, F. A.; Lawson, R. H., eds., Tissue culture as a plant production system for horticultural crops. Dordrecht: Martinus Nijhoff Publishers; 1986:53–60.

    Google Scholar 

  • McCown, B. H. Recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. In Vitro Cell. Dev. Biol. Plant 36:149–154; 2000.

    Google Scholar 

  • McDonald, M. B. Seed priming. In: Black, M.; Bewley, J. D., eds. Seed technology and its biological basis. Sheffield: Sheffield Academic Press; 2000:287–325.

    Google Scholar 

  • McInroy, J. A.; Kloepper, J. W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342; 1995.

    CAS  Google Scholar 

  • McKersie, B. D.; Bowley, S. R. Synthetic seeds of alfalfa. In: Redenbaugh, K., ed. Synseeds. Applications of synthetic seeds to crop improvement. Boca Raton, FL: CRC Press; 1993:231–255.

    Google Scholar 

  • McLearn, N.; Dong, Z. Microbial nature of the hydrogen-oxidizing agent in hydrogen treated soil. Biol. Fert. Soil. 35:465–469; 2002.

    CAS  Google Scholar 

  • McQuilken, M. P.; Halmer, P.; Rhodes, D. J. Application of microorganisms to seeds. In: Burges, H. D., ed. Formulation of microbial biopesticides. Beneficial microorganisms and nematodes. Dordrecht: Kluwer Academic Publishers; 1998:255–285.

    Google Scholar 

  • Mensen, R.; Hager, A.; Salzer, P. Elicitor-induced changes of wall-bound and secreted peroxidase activities in suspension-cultured spruce (Picea abies) cells are attenuated by auxins. Physiol. Plant. 102:539–546; 1998.

    CAS  Google Scholar 

  • Mensuali-Sodi, A.; Panizza, M.; Tognoni, F. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Cell Tiss. Organ Cult. 17:205–212; 1995.

    CAS  Google Scholar 

  • Métraux, J.-P.; Signer, H.; Ryals, J.; Ward, E.; Benz, W. M.; Gaudin, J.; Raschdorf, K.; Schmid, E.; Blum, W.; Inverardi, B. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006; 1990.

    PubMed  Google Scholar 

  • Midoh, N.; Iwata, I. Expression of defence-related genes by probenzole or 1,2-benzisothiazole-2(2H)-one 1,1-dioxide. J. Pesticide Sci. 22:45–47; 1997.

    CAS  Google Scholar 

  • Mithöfer, A. Suppression of plant defence in rhizobia-legume symbiosis. Trends Plant Sci. 7:440–444; 2002.

    PubMed  Google Scholar 

  • Mokotedi, M. E. O.; Watt, M. P.; Pammenter, N. W. In vitro rooting and subsequent survival of two clones of a cold-tolerant Eucalyptus grandis × E. nitens hybrid. 2002. Hort Science 35:1163–1165; 2000.

    Google Scholar 

  • Molina, A.; Hunt, M. D.; Ryals, J. A. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10:1903–1914; 1998.

    PubMed  CAS  Google Scholar 

  • Molla, M. A. Z.; Chowdhury, A. A.; Islam, A.; Hogue, S. Microbial mineralization of organic phosphate in soil. Plant Soil 78:393–399; 1984.

    CAS  Google Scholar 

  • Mucharromah, E.; Kue, J. Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria, and viruses in cucumber. Crop Protection 10:265–270; 1991.

    CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    CAS  Google Scholar 

  • Murphy, J.; Mark, L.; Periappuram, C.; Walsh, C.; Cassells, A. C., Microbial characterisation and preparation of inoculum for in vitro mycorrhization of strawberry in autotrophic culture. In: Cassells, A. L., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997:345–350.

    Google Scholar 

  • Nag, S.; Saha, K.; Choudhuri, M. A. Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. Plant Growth Regul. 20:182–194; 2001.

    CAS  Google Scholar 

  • Nakashita, H.; Yasuda, M.; Nishioka, M.; Hasegawa, S.; Arai, Y.; Uramoto, M.; Yoshida, S.; Yamaguchi, I. Chloroisonicotinamide derivative induces a broad range of disease resistance in rice and tobacco. Plant Cell Physiol. 43:823–831; 2002.

    PubMed  CAS  Google Scholar 

  • Newton, A. C.; Lyon, G. D. Enhancement of barley mildew resistance using yeast cell wall extracts. Barley Newslett. 32:117–119; 1988.

    Google Scholar 

  • Nieves, N.; Martínez, M. E.; Castillo, R.; Blanco, M. A.; González-Olmedo, J. L. Effect of abscisic acid and jasmonic acid on partial desiccation of encapsulated somatic embryos of sugarcane. Plant Cell Tiss. Organ Cult. 65:15–21; 2001.

    CAS  Google Scholar 

  • Nishiwaki, M.; Fujino, K.; Koda, Y.; Masuda, K.; Kikuta, Y. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759; 2000.

    PubMed  CAS  Google Scholar 

  • Nowak, J. Benefits of in vitro ‘biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell. Dev. Biol. Plant 34:122–130; 1998.

    Google Scholar 

  • Nowak, J.; Asiedu, S. K.; Bensalim, S.; Richards, J.; Stewart, A.; Smith, C.; Stevens, D.; Sturz, A. V. From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria. In: Cassells, A., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997:321–329.

    Google Scholar 

  • Nowak, J.; Asiedu, S. K.; Lazarovits, G. Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plants co-cultured with a plant growth promoting rhizobacterium. In: Carre, F.; Chagvardieff, P., eds. Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence: CEA: 1995:173–180.

    Google Scholar 

  • Nowak, J.; Bensalim, S.; Smith, C. D.; Dunbar, C.; Asiedu, S. K.; Madani, A.; Lazarovits, G.; Northcott, D.; Sturz, A. V. Behaviour of plant material issued from in vitro bacterization. Potato Res. 42:505–519; 1999.

    Google Scholar 

  • Nowak, J.; Matheson, S. L.; McLean, N. L.; Havard, P. Regenerative trait and cold hardiness in highly productive cultivars of alfalfa and red clover. Euphytica 59:189–196; 1992.

    Google Scholar 

  • Ongena, M.; Giger, A.; Jacques, P.; Dommes, J.; Thonart, P. Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur. J. Plant Pathol. 108:187–196; 2002.

    CAS  Google Scholar 

  • Palonen, P.; Buszard, D. Screening strawberry cultivars for cold hardiness in vitro. Acta Hort. 439:217–220; 1997.

    Google Scholar 

  • Palonen, P.; Buszard, D. In vitro screening for cold hardiness of raspberry cultivars. Plant Cell Tiss. Organ Cult. 53:213–216; 1998.

    CAS  Google Scholar 

  • Palonen, P.; Buszard, D. Cold hardening of raspberry plants in vitro is enhanced by increasing sucrose in the culture medium. Physiol. Plant 106:386–392; 1999.

    CAS  Google Scholar 

  • Pan, R.; Zhao, Z. Synergistic effects of plant growth retardants and IBA on the formation of adventitious roots in hypocotyl cuttings of mung bean. Plant Growth Regul. 14:15–19; 1994.

    CAS  Google Scholar 

  • Pattnaik, S.; Chand, P. K. Morphogenic response of the alginate-encapsulated axillary buds from in vitro shoot cultures of six mulberries. Plant Cell Tiss. Organ Cult. 60:177–185; 2000.

    Google Scholar 

  • Paula, M. A.; Reis, V. M.; Döbereiner, J. Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol. Fert. Soil 11:111–115; 1991.

    Google Scholar 

  • Paula, M. A.; Urquiaga, S.; Siqueira, J. O.; Döbereiner, J. Synergistic effects of vesicular-arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomoea batatas). Biol. Fertil. Soils 14:61–66; 1992.

    CAS  Google Scholar 

  • Pereira-Netto, A. B. Effect of inhibitors of ethylene biosynthesis and signal transduction pathway on the multiplication of in vitro-grown Hancornia speciosa. Plant Cell Tiss. Organ Cult. 66:1–7; 2001.

    CAS  Google Scholar 

  • Pfleger, F. L.; Linderman, R. G., eds. Mycorrhizae and plant health. St. Paul, MN: American Phytopathological Society; 1994.

    Google Scholar 

  • Phan, C. T.; Hegedus, P. Possible metabolic basis for the developmental anomaly observed in in vitro culture called ‘vitreous plants’. Plant Cell Tiss. Organ Cult. 6:83–94; 1986.

    CAS  Google Scholar 

  • Phillips, R. L.; Freeling, M. Plant genomics and our food supply: an introduction. Proc. Natl. Acad. Sci. USA 95:1969–1970; 1998.

    PubMed  CAS  Google Scholar 

  • Pierik, R. L. M. In vitro culture of higher plants. Dordrecht: Martinus Nijhoff Publishers; 1987.

    Google Scholar 

  • Pierik, R. L. M. In vitro culture of higher plants as a tool in propagation of horticultural crops. Acta Hort. 226:25–40; 1988.

    Google Scholar 

  • Pieterse, C. M. J.; Van Pelt, J. A.; Ton, J.; Parchmann, S.; Mueller, M. J.; Buchala, A. J.; Metraux, J.-P.; Van Loon, L. C. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57:123–134; 2000.

    CAS  Google Scholar 

  • Pieterse, C. M. J.; Van Pelt, J. A.; Van Wees, S. C. M.; Ton, J.; Leon-Kloosterziel, K. M.; Keurentjes, J. J. B.; Verhagen, B. W. M.; Knoester, M.; Van der Sluis, I.; Bakker, P. A. H. M.; Van Loon, L. C. Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur. J. Plant Pathol. 107:51–61; 2001.

    Google Scholar 

  • Pieterse, C. M. J.; Van Wees, S. C. M.; Hoffland, E.; Van Pelt, J. A.; Van Loon, L. C. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid and pathogenesis-related gene expression. Plant Cell 8:1225–1237; 1996.

    PubMed  CAS  Google Scholar 

  • Pillay, V. K.; Nowak, J. Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization and in vitro growth promotion of tomato (Lycopersicon esculentum L.) by a pseudomonad bacterium. Can. J. Microbiol. 43:354–361; 1997.

    Article  CAS  Google Scholar 

  • Ponton, F.; Piché, Y.; Parent, S.; Caron, M. The use of vesicular-arbuscular mycorrhizae in Boston fern production: I. Effects of peat-based mixes. Hort. Sci. 25:183–189; 1990.

    Google Scholar 

  • Pospíšilová, J.; Haisel, D.; Synková, H.; Čatský, J.; Wilhelmová, N.; Plzáková, S.; Procházková, D.; Procházková, D.; Šrámek, F. Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. Plant Cell Tiss. Organ Cult. 61:125–133; 2000.

    Google Scholar 

  • Powell, C. L.; Bagyaraj, D. J., eds. VA mycorrhiza. Boca Raton, FL: CRC Press; 1984.

    Google Scholar 

  • Preece, J. E.; Sutter, E. G. Acclimation of micropropagated plants to the greenhouse and field. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation, technology and application. Dordrecht: Kluwer Academic Publishers; 1991:71–93.

    Google Scholar 

  • Preininger, É.; Zatykó, J.; Szücs, P.; Korányl, P.; Gyurján, I. In vitro establishment of nitrogen-fixing strawberry (Fragaria x annassa) via artificial symbiosis with Azomonas insignis. In Vitro Cell. Dev. Biol. Plant 33:190–194; 1997.

    Google Scholar 

  • Probanza, A.; Mateos, J. L.; García, J. A. L.; Ramos, B.; de Felipe, M. R.; Manero, F. J. G. Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization and mycorrhizal infection. Microb. Ecol. 41:140–148; 2001.

    PubMed  CAS  Google Scholar 

  • Pruski, K.; Astatkie, T.; Mirza, M.; Nowak, J. Photoautotrophic micropropagation of Russet Burbank potato. Plant Cell Tiss. Organ Cult. 69:197–200; 2002b.

    Google Scholar 

  • Pruski, K.; Astatkie, T.; Nowak, J. Jasmonate effects on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tubersosum L.) under different media and photoperiod conditions. In Vitro Cell. Dev. Biol. Plant 38:203–209; 2002a.

    CAS  Google Scholar 

  • Pruski, K.; Kozai, T.; Lewis, T.; Astatkie, T.; Nowak, J. Sucrose and light effects on in vitro cultures of potato, chokecherry and Saskatoon berry during low temperature storage. Plant Cell Tiss. Organ Cult. 63:215–221; 2000a.

    CAS  Google Scholar 

  • Pruski, K.; Lewis, T.; Astatkie, T.; Nowak, J. Micropropagation of Chokecherry and Pincherry cultivars. Plant Cell Tiss. Organ Cult. 63:93–100; 2000b.

    Google Scholar 

  • Pruski, K.; Mohyuddin, M.; Grainger, G. Saskatoon (Amelanchier alnifolia Nutt.). In: Bajaj, Y. P. S. ed. Biotechnology in agriculture and forestry, vol. 16. Trees III. Berlin: Springer-Verlag; 1991:164–179.

    Google Scholar 

  • Pruski, K.; Nowak, J.; Grainger, G. Micropropagation of four cultivars of the Saskatoon berry (Amelanchier alnifolia Nutt.). Plant Cell Tiss. Organ Cult. 21:103–109; 1990.

    CAS  Google Scholar 

  • Puthur, J. T.; Prasad, K. V. S. K.; Sharmila, P.; Saradhi, P. P. Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated Leucaena leucocephala plantlets. Plant Cell Tiss. Organ Cult. 53:41–47; 1998.

    Google Scholar 

  • Quiroz-Figueroa, F.; Méndez-Zeel, M.; Larqué-Saavedra, A.; Loyola-Vargas, V. M. Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep. 20:679–684; 2001.

    CAS  Google Scholar 

  • Rai M. K. Current advances in mycorrhization in micropropagation. In Vitro Cell Dev. Biol. Plant 37:158–167; 2001.

    Google Scholar 

  • Rehid, H.; Baccou, J. C. Effect of light and sucrose on the ultrastructure of plastids and on the growth and steroidic sapogenin production of Trigonella foenum-graecum L. cell suspension cultures. In: Carre, F.; Chagvardieff, P., eds. Ecophysiology and photosynthetic in vitro cultures. Aix-en-Provence: CEA; 1995;87–92.

    Google Scholar 

  • Redenbaugh, K.; Fujii, J. A. A.; Slade, D. Hydrated coating for synthetic seeds. In: Redenbaugh, K., ed. Synseeds. Applications of synthetic seeds to crop improvement. Boca Raton, FL: CRC Press; 1993;35–46.

    Google Scholar 

  • Reed, B. M.; Tanprasert, P. Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tiss. Cult. Biotechnol. 1:137–142; 1995.

    Google Scholar 

  • Reglinski, T.; Lyon, G. D.; Newton, A. C. The control of Botrytis cinerea and Rhizoctonia solani on lettuce using elicitors extracted from yeast cell walls. J. Plant Dis. Prot. 102:257–266; 1995.

    CAS  Google Scholar 

  • Reis, V. M.; Olivares, F. L.; Martinez de Oliveria, A. L.; dos Reis Junior, F. B.; Baldani, J. I.; Döbereiner, J. Technical approaches to inoculate micropropagated sugar cane plants with Acetobacter diazotrophicus. Plant Soil 206:205–211; 1999.

    Google Scholar 

  • Rice, R. D.; Alderson, P. G.; Hall, J. F.; Ranchhod, A. Micropropagation: principles and commercial practice. In: Moo-Young, M., ed. Plant biotechnology—comprehensive biotechnology, second supplement. Oxford: Pergamon Press; 1992:130–149.

    Google Scholar 

  • Richards, J. Induced resistance responses in potato inoculated in vitro with a plant growth promoting pseudomonad bacterium. M.Sc. thesis, Dalhousie University, Halifax, NS, Canada; 1997.

    Google Scholar 

  • Ruffoni, B.; Rabaglio, M.; Semeria, L.; Allavena, A. Improvement of micropropagation of Genista monosperma Lam by abscisic acid treatment. Plant Cell Tiss. Organ Cult. 57:223–225; 1999.

    CAS  Google Scholar 

  • Salzer, P.; Boller, T. Elicitor-induced reactions in mycorrhizae and their suppression. In: Podila, G. K.; Douds, D. D., eds. Current advances in mycorrhizae research. St. Paul, MH: American Phytopathological Society Press; 2000:1–10.

    Google Scholar 

  • Salzer, P.; Corbiere, H.; Boller, T. Hydrogen peroxide accumulation in Medicago trancatula roots colonized by the arbuscular mycorrhizaforming fungus Glomus intraradices. Planta 208:319–325; 1999.

    CAS  Google Scholar 

  • Sarasan, V.; Roberts, A. V.; Rout, G. R. Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep. 10:183–186; 2001.

    Google Scholar 

  • Sarkar, D.; Sud, K. C.; Chakrabarti, S. K.; Naik, P. S. Growing of potato microplants in the presence of alginate-silverthiosulfate capsules reduces ethylene-induced culture abnormalities during minimal growth conservation in vitro. Plant Cell Tiss. Organ Cult. 68:79–89; 2002.

    CAS  Google Scholar 

  • Schippers, B.; Bakker, A. W.; Bakker, P. A. H. M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339–358; 1987.

    Google Scholar 

  • Schiraldi, C.; Di Lernia, I.; De Rosa, M. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20:420–425; 2002.

    PubMed  CAS  Google Scholar 

  • Schuller, A.; Kirchner-Neß, R.; Reuther, G. Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos. Plant Cell Tiss. Organ Cult. 60:23–31; 2000.

    CAS  Google Scholar 

  • Senaratna, T.; Touchell, D.; Bunn, E.; Dixon, K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 30:157–161; 2000.

    CAS  Google Scholar 

  • Seon, J. H.; Cui, Y. Y.; Kozai, T.; Paek, K. Y. Influence of in vitro growth conditions on photosynthetic competence and survival rate of Rehmannia glutinosa plantlets during acclimatization period. Plant Cell Tiss. Organ Cult. 61:135–142; 2000.

    Google Scholar 

  • Sessitsch, A.; Reiter, B.; Pfeifer, U.; Wilhelm, E. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomyces-specific PCR of 16rRNA genes. FEMS Microb. Ecol. 39:23–32; 2002.

    CAS  Google Scholar 

  • Sessitsch, A.; Weilharter, A.; Gerzabek, M. H.; Kirchmann, H.; Kandeler, E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67:4215–4224; 2001.

    PubMed  CAS  Google Scholar 

  • Sharma, M.; Sood, A.; Nagar, P. K.; Prakash, O.; Ahuja, P. S. Direct rooting and hardening of tea microshoots in the field. Plant Cell Tiss. Organ Cult. 58:111–118; 1999.

    Google Scholar 

  • Sharma, V. K.; Nowak, J. Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can. J. Microbiol. 44:528–536; 1998.

    CAS  Google Scholar 

  • Sheen, J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902; 1996.

    PubMed  CAS  Google Scholar 

  • Shetty, K.; Curtis, O. F.; Levin, R. E.; Witkowsky, R.; Ang, W. Prevention of vitrification associated with in vitro shoot culture of oregano (Origanum vulgare) by Pseudomonas spp. J. Plant Physiol. 147:447–451; 1995.

    CAS  Google Scholar 

  • Sima, B. D.; Desjardins, Y. Sucrose supply enhances phosphoenolpyruvate carboxylase phosphorylation level in in vitro Solanum tuberosum. Plant Cell Tiss. Organ Cult. 67:235–242; 2001.

    CAS  Google Scholar 

  • Sipos, J.; Nowak, J.; Hicks, G. Effect of daminozide on survival, growth and yield of micropropagated potatoes. Am. Potato J. 65:353–364; 1988.

    CAS  Google Scholar 

  • Somerville, C.; Somerville, S. Plant functional genomics. Science 285:380–383; 1999.

    PubMed  CAS  Google Scholar 

  • Soneji, J. R.; Rao, P. S.; Mhatre, M. Germination of synthetic seeds of pineapple (Ananas comosus L. Merr.). Plant Cell Rep. 20:891–894; 2002.

    CAS  Google Scholar 

  • Stewart, A. H. Suppression of verticillium wilt in potatoes with a plant growth promoting rhizobacterium. M.Sc. thesis, Dalhousie University, Halifax, NS, Canada; 1997.

    Google Scholar 

  • Stracke, S.; Kistner, C.; Yoshida, S.; Mulder, L.; Sato, S.; Kaneko, T.; Tabata, S.; Sandal, N.; Stougaard, J.; Szczyglowski, K.; Parniske, M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962; 2002.

    PubMed  CAS  Google Scholar 

  • Sturz, A. V. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263; 1995.

    CAS  Google Scholar 

  • Sturz, A. V.; Christic, B. R. Endophytic bacterial systems governing red clover growth and development. Ann.Appl. Biol. 126:285–290; 1995.

    Google Scholar 

  • Sturz, A. V.; Christie, B. R.; Matheson, B. G.; Nowak, J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol. Fert. Soils 25:13–19; 1997.

    Google Scholar 

  • Sturz, A. V.; Christie, B. R.; Nowak, J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19:1–30; 2000.

    Google Scholar 

  • Sturz, A. V.; Nowak, J. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15:183–190; 2000.

    Google Scholar 

  • Tadesse, M.; Lommen, W. J. M.; Struik, P. C. Effects of in vitro treatments on leaf area growth of potato transplants during acclimatisation. Plant Cell Tiss. Organ Cult. 61:59–67; 2000.

    Google Scholar 

  • Taylor, J.; Harrier, L. A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. ev. Glen Prosen (Red Raspberry). Plant Soil 225:53–61; 2000.

    CAS  Google Scholar 

  • Thomas, P. Leaf number and position effects on the survival and performance of grape microcuttings in vitro, and the sensitivity of the cut nodal region to the medium. Plant Cell Tiss. Organ Cult. 65:129–139; 2001.

    CAS  Google Scholar 

  • Tichá, I.; Eáp, F.; Pacovská, D.; Hoffman, P.; Haisel, D.; Èapková, V.; Schäfer, C. Culture on sugar medium enhances photosynthetic capacity and light resistance of plantlets grown in vitro. Physiol. Plant. 102:155–162; 1998.

    Google Scholar 

  • Timmusk, S.; Wagner, E. G. H. The plant-growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact.12:951–959; 1999.

    PubMed  CAS  Google Scholar 

  • Tisserat, B.; Silman, R. Interactions of culture vessels, media volume, culture density and carbon dioxide levels of lettuce and spearmint shoot growth in vitro. Plant Cell Rep. 19:464–471; 2000.

    CAS  Google Scholar 

  • Ton, J.; Van Pelt, J. A.; Van Loon, L. C.; Pieterse, C. M. J. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15:27–34; 2002.

    PubMed  CAS  Google Scholar 

  • Uknes, S.; Mauch-Mani, B.; Moyer, M.; Potter, S.; Williams S.; Dincher, S.; Chandler, D.; Slusarenko, A.; Ward, E.; Ryals, J. Acquired resistance in Arabidopsis. Plant Cell 4:645–656; 1992.

    PubMed  CAS  Google Scholar 

  • Uosukainen, M.; Rantala, S.; Manninen, A.; Vestberg, M. Improvement of microplant establishment through in vitro and ex vitro exogenous chemical applications. Acta Hort. 530:325–331; 2000.

    Google Scholar 

  • Van der Linde, P. C. G. Certified plants from tissue culture. Acta Hort. 530:93–102; 2000.

    Google Scholar 

  • Van Huylenbroeck, J. M.; Debergh, P. C. Physiological aspects in acclimatization of micropropagated plantlets. Plant Tiss. Cult. Biotechnol. 2:136–141; 1996.

    Google Scholar 

  • Van Loon, L. C.; Bakker, P. A. H. M.; Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483; 1998.

    PubMed  Google Scholar 

  • Van Wees, S. C. M.; De Swart, E. A. M.; Van Pelt, J. A.; Van Loon, L. C.; Pieterse, S. M. J. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97:8711–8716; 2000.

    PubMed  Google Scholar 

  • Van Wees, S. C. M.; Pieterse, C. M. J.; Trijssenar, A.; Van't Westenbe, Y. A. M.; Hartog, F.; Van Loon, L. C. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 6:716–724; 1997.

    Google Scholar 

  • Varga, Sz. S.; Korányi, P.; Preininger, É.; Gyurján, I. Artificial associations between Daucus and nitrogen-fixing Azotobacter cells in vitro. Physiol. Plant. 90:786–790; 1994.

    Google Scholar 

  • Vestberg, M.; Kukkonen, S.; Neuvonen, E.-L.; Uosukainen, M. Mycorrhizal inoculation of micropropagated strawberry—case studies on mineral soil and a mined peat bog. Acta Hort. 530:297–304; 2000.

    Google Scholar 

  • Villalobos-Amador, E.; Rodríguez-Hernández, G.; Pérez-Molphe-Balch, E. Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezzii Rzedowsky and P. pineceana Gordon. Plant Cell Rep. 20:779–785; 2002.

    CAS  Google Scholar 

  • Visser-Tenyenhuis, C.; Odumeru, J.; Saxena, P. K.; Murphy, B. N. S. Modulation of somatic embryogenesis in hypocotyl derived cultures of geranium (Pelargonium x horturum Bailey) ev. Ringo Rose by a bacterium. In Vitro Cell. Dev. Biol. Plant 30:140–143; 1994.

    Google Scholar 

  • Vosatka, M.; Gryndler, M.; Jansa, J.; Vohnik, M. Post vitro mycorrhization and bacterization of micropropagated strawberry, potato, and azalea. Acta Hort. 530:313–324; 2000.

    Google Scholar 

  • Wake, H.; Akasaka, A.; Umetsu, H.; Ozeki, Y.; Shimomura, K.; Matsunaga, T. Promotion of plantlet formation from somatic embryos of carrot treated with a high molecular weight extract from marine cyanobacterium. Plant Cell Rep. 11:62–65; 1992.

    Google Scholar 

  • Wake, H.; Umetsu, H.; Ozeki, Y. Extracts of marine cyanobacteria stimulated somatic embryogenesis of Daucus carota L. Plant Cell Rep. 9:655–658; 1991.

    Google Scholar 

  • Walker, D. R.; Parrott, W. A. Effect of polyethylene glycol and sugar alcohols on soybean somatic embryo germination and conversion. Plant Cell.Tiss. Organ Cult. 64:55–62; 2001.

    CAS  Google Scholar 

  • Wang, H.; Parent, S.; Gosselin, A.; Desjardins, Y. Study of vesicular-arbuscular mycorrhizal peat-based substrates on symbiosis establishment, acelimatization and growth of three micropropagated species. J. Am. Soc. Hort. Sci. 118:896–901; 1993.

    Google Scholar 

  • Ward, E. W. B. Suppression of metalaxyl activity by glyphosate: evidence that host defence mechanisms contribute to metalaxyl inhibition of Phytophthora megasperma f. sp glycinea in soybeans. Physiol. Plant Pathol. 25:381–386; 1984.

    Article  CAS  Google Scholar 

  • Ward, E. W. B.; Lazarovits, G.; Stossel, P.; Barrie, S. D.; Urwin, C. H. Glyceollin production associated with the control of Phytophthora rot of soybean by the systemic fungicide, metalaxyl. Phytopathology 70:738–740; 1980.

    Article  CAS  Google Scholar 

  • Watanabe, T.; Sekizawa, Y.; Shimura, M.; Suzuki, Y.; Matsumoto, K.; Iwata, M.; Mase, S. Effects of probenazole (Oryzemate) on rice plants with reference to controlling rice blast. J. Pesticide Sci. 4:53–59; 1979.

    CAS  Google Scholar 

  • Weber, H. Fatty acid-derived signals in plants. Trends Plant Sci. 7:217–224; 2002.

    PubMed  CAS  Google Scholar 

  • Weiss, M.; Schmidt, J.; Neumann, D.; Wray, V.; Christ, R.; Strack, D. Phenylpropanoids in mycorrhizas of the Pinaceae. Planta 208:491–502; 1999.

    CAS  Google Scholar 

  • Welbaum, G. E.; Shen, Z. The evolution and effects of priming vegetable seeds. Seed Technol.20:209–235; 1998.

    Google Scholar 

  • Wenkart, S.; Roth-Bejerano, N.; Mills, D.; Kagan-Zur, V. Mycorrhizal associations between Tuber melanosporum mycelia and transformed roots of Cistus incanus. Plant Cell Rep. 20:369–373; 2001.

    CAS  Google Scholar 

  • White, R. F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412; 1979.

    CAS  PubMed  Google Scholar 

  • Wilhelm, E.; Arthofer, W.; Schafleitner, R. Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectaria parasitica). In: Cassells, A. ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997:331–337.

    Google Scholar 

  • Wilson, S. B.; Rajapakse, N. C. Media composition and light affect storability and poststorage recovery of micropropagated hosta plantlets. Hort. Sci. 35:1159–1162; 2000.

    Google Scholar 

  • Yang, Y.-S.; Wada, K.; Goto, M.; Futsuhara, Y. In vitro formation of nodular calli in soybean (Glycine max L.) induced by co-cultivated Pseudomonas maltophilia. Jap. J. Breed. 41:595–604; 1991.

    Google Scholar 

  • Yoshioka, K.; Nakashita, H.; Klessig, D. F.; Yamaguchi, I. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25:149–157; 2001.

    PubMed  CAS  Google Scholar 

  • Yu, T. A.; Yeh, S. D.; Cheng, Y. H.; Yang, J. S. Efficient rooting for establishment of papaya plantlets by micropropagation. Plant Cell Tiss. Organ Cult. 61:29–35; 2000.

    CAS  Google Scholar 

  • Zaady, E.; Perevolotsky, A. Enhancement of growth and establishment of oak seedlings (Quercus ithaburensis Decaisne) by inoculation with Azospirillum brasilense. Forest Ecol. Man. 72:81–83; 1995.

    Google Scholar 

  • Zatylny, A. M.; Proctor, J. T. A.; Sullivan, J. A. Screening red raspberry for cold hardiness in vitro. Hort. Sci. 28:740–741; 1993.

    Google Scholar 

  • Zehnder, G.; Kloepper, J.; Tuzun, S.; Yao, C.; Wei, G.; Chambliss, O.; Shelby, R. Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Ent. Exp. Applic. 83:81–85; 1997.

    Google Scholar 

  • Ziv, M. In vitro hardening and acclimatization of tissue culture plants. In: Withers, L. A.; Alderson, P. G., eds. Plant tissue culture and its agricultural applications. London: Butterworths; 1986:187–203.

    Google Scholar 

  • Ziv, M. Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation technology and applications. Dordrecht: Kluwer Academic Publishers; 1991:45–69.

    Google Scholar 

  • Ziv, M.; Schwartz, A.; Fleminger, D. Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro, implications for hardening. Plant Sci. 52:127–134; 1987.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, J., Shulaev, V. Priming for transplant stress resistance in In vitro propagation. In Vitro Cell.Dev.Biol.-Plant 39, 107–124 (2003). https://doi.org/10.1079/IVP2002403

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002403

Key words

Navigation