Skip to main content
Log in

Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A reproducible system for gene transfer in lentil through particle bombardment is presented. Lentil cotyledonary nodes excised from germinated seedlings were bombarded with a plasmid containing a mutant acetolactate synthase gene (ALS) from tobacco conferring resistance to sulfonylurea herbicides. Putative transgenic shoots regenerated on Murashige and Skoog medium supplemented with 6-benzylaminopurine (BA) and chlorsulfuron (5 nM for first 4 wk followed by 2.5 nM for the remainder of the culture period) were micrografted and successfully transferred to soil. T0 and selfed progeny plants were screened using metsulfuron herbicide leaflet painting. The non-transformed escapes died and transformed plants survived the test. The surviving plants were phenotypically normal and produced viable seeds. The presence and stable transmission of the transgene into genomic DNA of screened T1 transformants was confirmed by PCR and Southern hybridization. This method for producing transformed plants will allow new opportunities for lentil breeding to produce improved cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M.; Fautrier, A. G.; McNeil, D. L.; Hill, G. D.; Burritt, D. J. In vitro propagation of Lens species and their F1 interspecific hybrids. Plant Cell Tiss. Organ Cult. 47:169–176; 1997.

    Article  Google Scholar 

  • Aragão, F. J. L.; Barros, L. M.; Brasileiro, A. C. M.; Ribeiro, S. G.; Smith, F. D.; Sanford, J. C.; Rech, E. L. Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor. Appl. Genet. 93:142–150; 1996.

    Article  Google Scholar 

  • Aragão, F. J. L.; Sarokin, L.; Vianna, G. R.; Rech, E. L. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101:1–6; 2000.

    Article  Google Scholar 

  • Bajaj, Y. P. S.; Dhanju, M. S. Regeneration of plants from apical meristem tips of some legumes. Curr. Sci. 48:906–907; 1979.

    Google Scholar 

  • Bean, S. J.; Gooding, P. S.; Mullineaux, P. M.; Davies, D. R. A simple system for pea transformation. Plant Cell Rep. 16:513–519; 1997.

    Google Scholar 

  • Brar, G. S.; Cohen, B. A.; Vick, C. L.; Johnson, G. W. Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J. 5:745–753; 1994.

    Article  Google Scholar 

  • Chowrira, G. M.; Akella, V.; Fuerst, P. E.; Lurquin, P. F. Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Mol. Biotechnol. 5:85–96; 1996.

    PubMed  CAS  Google Scholar 

  • Christou, P. Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann. Bot. 66:379–386; 1990.

    CAS  Google Scholar 

  • Christou, P. Biotechnology applied to grain legumes. Field Crops Res. 53:83–97; 1997.

    Article  Google Scholar 

  • Christou, P.; McCabe, D. E. Prediction of germ-line transformation events in chimaeric R0 transgenic soybean plantlets using tissue specific expression patterns. Plant J. 2:283–290; 1992.

    Article  CAS  Google Scholar 

  • Christou, P.; Swain, W. F.; Yang, N. S.; McCabe, D. E. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl Acad. Sci. USA 86:7500–7504; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Erskine, W. Evaluation and utilization of lentil germplasm in an international breeding program. In: Witcombe, J. R.; Erskine, W., eds Genetic resources and their exploitation—chickpeas, faba beans and lentils. The Hague: Martinus Nijhoff; 1984:225–237.

    Google Scholar 

  • Gulati, A.; Jaiwal, P. K. Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep. 13:523–527; 1994.

    Article  CAS  Google Scholar 

  • Gulati, A.; Schryer, P.; McHughen, A. Regeneration and Micrografting of lentil shoots. In Vitro Cell. Dev. Biol. Plant 37:798–802; 2001.

    Article  CAS  Google Scholar 

  • Kar, S.; Basu, D.; Das, S.; Ramkrishnan, N. A.; Mukherjee, P.; Nayak, P.; Sen, S. K. Expression of cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res. 6:177–185; 1997.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Wolf, E. D.; Wu, R.; Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73; 1987.

    Article  CAS  Google Scholar 

  • Lee, K. Y.; Townsend, J.; Tepperman, J.; Black, M.; Chui, C. F.; Mazur, B.; Dunsmuir, P.; Bedbrook, J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7:1241–1248; 1988.

    PubMed  CAS  Google Scholar 

  • Lurquin, P. F.; Cai, Z.; Stiff, C. M.; Fuerst, E. P. Half embryo cocultivation technique for estimating the susceptibility of pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) cultivars to Agrobacterium tumefaciens. Mol. Biotechnol. 9:175–179; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone, M.; Dini, L.; Di Marzio, L.; Di Giulio, A.; Rossi, A.; Finazzi Agrò, A. Interaction of DNA with cationic liposomes: ability of transfecting lentil protoplasts. Biochem. Biophys. Res. Commun. 186:1417–1422; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone, M.; Veldink, G. A.; Finazzi Agrò, A.; Vilegenthart, J. F. G. Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules. Biochim. Biophys. Acta 1243:136–142; 1995.

    PubMed  Google Scholar 

  • Malik, K. A.; Saxena, P. K. Thiadiazuron induces high frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Aust. J. Plant Physiol. 19:731–740; 1992.

    Article  CAS  Google Scholar 

  • McCown, B. H.; McCabe, D. E.; Russell, D. E.; Robinson, D. R.; Barton, K. A.; Raffa, K. F. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 9:590–594; 1991.

    Article  CAS  Google Scholar 

  • Morrish, F.; Songstad, D. D.; Armstrong, C. L.; Fromm, M. Microprojectile bombardment: a method for the production of transgenic cereal crop plants and the functional analysis of genes. In: Hiatt, A., ed. Transgenic plants fundamentals and applications. New York: Marcell Dekker, Inc.; 1993:133–171.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Murthy, B. N. S.; Victor, J.; Singh, R. P.; Fletcher, R. A.; Saxena, P. K. In vitro regeneration of chickpea (Cicer arietinum L.): stimulation of direct organogensis and somatic embryogensis by thidiazuron. J. Plant Growth Regul. 19:233–240; 1996.

    Article  CAS  Google Scholar 

  • Polanco, M. C.; Peláez, M. I.; Ruiz, M. L. Factors affecting callus and shoot formation in in vitro cultures of Lens culinaris Medik. Plant Cell Tiss. Organ Cult. 15:175–182; 1988.

    Article  Google Scholar 

  • Polisetty, R.; Paul, V.; Deveshwar, J.J.; Khetarpal, S.; Suresh, K.; Chandra, R. Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietineum L.). Plant Cell Rep. 16:565–571; 1997.

    CAS  Google Scholar 

  • Rajasekaran, R.; Hudspeth, R. L.; Cary, J. W.; Anderson, D. M.; Cleveland, T. E. High frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cells suspension cultures. Plant Cell Rep. 19:539–545; 2000.

    Article  CAS  Google Scholar 

  • Russell, D. R.; Wallace, K.; Bathe, J.; Martinell, B.; McCabe, D. Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep. 12:165–169; 1993.

    Article  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Santarem, E. R.; Finer, J. J. Transformation of soybean [Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semisolid medium. In Vitro Cell Dev. Biol. Plant 35:451–455; 1999.

    Google Scholar 

  • Saskatchewan Pulse Growers. Pulse production manual; lentil, 2nd edn. Saskatoon, SK: Saskatchewan Pulse Growers; 2000:7.3–7.31.

    Google Scholar 

  • Singh, R. K.; Raghuvanshi, S. S. Plantlet regeneration from nodal segment and shoot tip derived explants of lentil. Lens Newslett. 6:33–35; 1989.

    Google Scholar 

  • Warkentin, T. D. Potential for the genetic transformation of lentil (Lens culinaris Medik.) with Agrobacterium tumefaciens. Ph.D. thesis, University of Saskatchewan, Saskatoon, SK.; 1992; 150 pp.

    Google Scholar 

  • Warkentin, T. D.; McHughen, A. Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep. 10:489–493; 1991.

    Article  Google Scholar 

  • Warkentin, T. D.; McHughen, A. Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Rep. 11:274–278; 1992.

    Article  CAS  Google Scholar 

  • Warkentin, T. D.; McHughen, A. Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens. Lens Newslett. 20:26–28; 1993.

    Google Scholar 

  • Wijayanto, T.; McHughen, A. Genetic transformation of Linum by particle bombardment. In Vitro Cell. Dev. Biol. Plant 35:456–465; 1999.

    CAS  Google Scholar 

  • Williams, J. D.; McHughen, A. Plant regeneration of the legume Lens culinaris Medik. in vitro. Plant Cell Tiss. Organ Cult. 7:149–153; 1986.

    Article  Google Scholar 

  • Wright, M. S.; Koehler, S. M.; Hinchee, M. A.; Carnes, M. G. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5:150–154; 1986.

    Article  CAS  Google Scholar 

  • Yang, J.; Lee, H. J.; Shin, D. H.; Oh, S. K.; Seon, J. H.; Paek, K. Y.; Han, K. H. Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep. 18:978–984; 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pat Schryer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulati, A., Schryer, P. & McHughen, A. Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell.Dev.Biol.-Plant 38, 316–324 (2002). https://doi.org/10.1079/IVP2002303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002303

Key words

Navigation