Journal of Biological Chemistry
Volume 280, Issue 17, 29 April 2005, Pages 16925-16933
Journal home page for Journal of Biological Chemistry

Mechanisms of Signal Transduction
Heme-regulated Inhibitor Kinase-mediated Phosphorylation of Eukaryotic Translation Initiation Factor 2 Inhibits Translation, Induces Stress Granule Formation, and Mediates Survival upon Arsenite Exposure*

https://doi.org/10.1074/jbc.M412882200Get rights and content
Under a Creative Commons license
open access

Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the α subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2α, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts. In addition, HRI expression was required for stress granule formation and cellular survival after arsenite treatment. In vivo studies elucidated a fundamental requirement for HRI in murine survival upon acute arsenite exposure. The results demonstrated an essential role for HRI in mediating arsenite stress-induced phosphorylation of eukaryotic translation initiation factor 2α, inhibition of protein synthesis, stress granule formation, and survival.

Cited by (0)

*

Portions of this work were supported by National Institutes of Health RO1 Grants DK42394 (to R. J. K.) and DK 16272 (to J.-J. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.