Genes: Structure and Regulation
A New Fluorescence Resonance Energy Transfer Approach Demonstrates That the Histone Variant H2AZ Stabilizes the Histone Octamer within the Nucleosome*

https://doi.org/10.1074/jbc.M313152200Get rights and content
Under a Creative Commons license
open access

Nucleosomes are highly dynamic macromolecular complexes that are assembled and disassembled in a modular fashion. One important way in which this dynamic process can be modulated is by the replacement of major histones with their variants, thereby affecting nucleosome structure and function. Here we use fluorescence resonance energy transfer between fluorophores attached to various defined locations within the nucleosome to dissect and compare the structural transitions of a H2A.Z containing and a canonical nucleosome in response to increasing ionic strength. We show that the peripheral regions of the DNA dissociate from the surface of the histone octamer at relatively low ionic strength, under conditions where the dimer-tetramer interaction remains unaffected. At around 550 mm NaCl, the (H2A-H2B) dimer dissociates from the (H3-H4)2 tetramer-DNA complex. Significantly, this latter transition is stabilized in nucleosomes that have been reconstituted with the essential histone variant H2A.Z. Our studies firmly establish fluorescence resonance energy transfer as a valid method to study nucleosome stability, and shed new light on the biological function of H2A.Z.

Cited by (0)

*

This work was supported by Human Frontiers Science Program Grant RG00059 (to K. L. and D. J. T.) and National Institutes of Health Grant GM61909 (to K. L.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains Fig. S1.