Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars

Richard P. Oliver A B , Kasia Rybak A , Peter S. Solomon A and Margo Ferguson-Hunt A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Necrotrophic Fungal Pathogens, Faculty of Health Sciences, Murdoch University, Murdoch, WA 6150, Australia.

B Corresponding author. Email: roliver@murdoch.edu.au

Crop and Pasture Science 60(4) 348-352 https://doi.org/10.1071/CP08259
Submitted: 8 August 2008  Accepted: 3 February 2009   Published: 21 April 2009

Abstract

A recent survey of worldwide isolates of Stagonospora nodorum showed that all Australian isolates expressed the host-specific toxin ToxA (Stukenbrock and McDonald 2007). In contrast, very few Chinese isolates did. All the Australian Pyrenophora tritici-repentis isolates that were tested expressed ToxA. We therefore postulated that the wheat gene that confers sensitivity to ToxA, Tsn1, would vary in prevalence in wheat cultivars in use in the two countries. Contrary to expectation, 10 out of 21 Chinese cultivars responded to ToxA as did 26 out of 46 Australian cultivars. The result suggests that ToxA has not had a determining effect on the survival of wheat cultivars in either country. They also suggest that despite the widespread use of Tsn1 markers in Australia, sensitive alleles are still commonplace. The removal of sensitive alleles from breeders’ lines could be readily achieved and could significantly affect the resistance of wheat to both diseases.


Acknowledgments

This work was funded by the Australian Grains Research and Development Corporation (UMU00027 and UMU00022). We thank the AWCC for the wheat cultivars, and Bruce McDonald and Eva Stukenbrock (ETH Zurich), and Tim Friesen and Justin Faris (USDA, North Dakota), for helpful comments and collaboration.


References


Bhathal J, Loughman R, Speijers J (2003) Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and septoria nodorum blotch. European Journal of Plant Pathology 109, 435–443.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Brennan JP, Murray GM (1988) Australian wheat diseases–assessing their economic importance. Agricultural Science 1, 26–35. open url image1

Brennan JP , Murray GM (1998) ‘Economic importance of wheat diseases in Australia.’ (NSW Agriculture: Wagga Wagga, NSW)

Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86, 459–463.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Friesen TL, Ali S, Kianian S, Francl LJ, Rasmussen JB (2003) Role of host sensitivity to ptr ToxA in development of tan spot of wheat. Phytopathology 93, 397–401.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Friesen TL, Ali S, Klein KK, Rasmussen JB (2005) Population genetic analysis of a global collection of Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Phytopathology 95, 1144–1150.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Friesen TL, Faris JD, Solomon PS, Oliver RP (2008a) Host-specific toxins: effectors of necrotrophic pathogenicity. Cellular Microbiology 10, 1421–1428.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum–wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. The Plant Journal 51, 681–692.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics 38, 953–956.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Friesen TL, Zhang Z, Solomon PS, Oliver RP, Faris JD (2008b) Characterisation of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiology 146, 682–693.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Haen KM, Lu HJ, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Science 44, 951–962.
CAS |
open url image1

Hane JK, Lowe RGT, Solomon PS, Tan K-C, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SFF, McDonald BA, Oliver RP (2007) Dothideomycete–plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. The Plant Cell 19, 3347–3368.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Horton R , Pease L (1991) Recombination and mutagenesis of DNA sequences using PCR. In ‘Directed mutagenesis: a practical approach’. (Ed. MJ McPherson) pp. 217–247.

Lamari L, Strelkov SE, Yahyaoui A, Amedov M, Saidov M, Djunusova M, Koichibayev M (2005) Virulence of Pyrenophora tritici-repentis in the countries of the Silk Road. Canadian Journal of Plant Pathology. Revue Canadienne de Phytopathologie 27, 383–388. open url image1

Liu Z, Friesen T, Ling H, Meinhardt S, Oliver R, Rasmussen J, Faris J (2006) The Tsn1-ToxA interaction in the wheat–Stagonospora nodorum pathosystem parallels that of the wheat–tan spot system. Genome 49, 1265–1273.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lu HJ, Fellers JP, Friesen TL, Meinhardt SW, Faris JD (2006) Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theoretical and Applied Genetics 112, 1132–1142.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

McDonald BA, Miles J, Nelson LR, Pettway RE (1994) Genetic variability in nuclear DNA in field populations of Stagonospora nodorum. Phytopathology 84, 250–255.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Oliver RP, Lord M, Rybak K, Faris JD, Solomon PS (2008a) Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin-sensitive cultivars. Phytopathology 98, 488–491.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Oliver RP, Rybak K, Shankar M, Loughman R, Harry N, Solomon PS (2008b) Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum–wheat pathosystem as a model. Plant Pathology 57, 527–532.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Oliver RP, Solomon PS (2008) Recent fungal diseases of crop plants: is lateral gene transfer a common theme? Molecular Plant-Microbe Interactions 21, 287–293.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Sarma GN, Manning VA, Ciuffetti LM, Karplus PA (2005) Structure of Ptr ToxA: An RGD-containing host-selective toxin from Pyrenophora tritici-repentis. The Plant Cell 17, 3190–3202.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166, 368–379.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Solomon PS, Lowe RGT, Tan KC, Waters ODC, Oliver RP (2006) Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Molecular Plant Pathology 7, 147–156.
Crossref | GoogleScholarGoogle Scholar | open url image1

Solomon PS, Thomas SW, Spanu P, Oliver RP (2003) The utilisation of di/tripeptides by Stagonospora nodorum is dispensable for wheat infection. Physiological and Molecular Plant Pathology 63, 191–199.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Stukenbrock EH, McDonald BA (2007) Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. Molecular Plant Pathology 8, 321–332.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Tuori RP, Wolpert TJ, Ciuffetti LM (2000) Heterologous expression of functional Ptr ToxA. Molecular Plant-Microbe Interactions 13, 456–464.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: What’s in a name? Annual Review of Phytopathology 40, 251–285.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Zhang HF, Francl LJ, Jordahl JG, Meinhardt SW (1997) Structural and physical properties of a necrosis-inducing toxin from Pyrenophora tritici-repentis. Phytopathology 87, 154–160.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1