Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The hypoxia that developed in a microtidal estuary following an extreme storm produced dramatic changes in the benthos

James R. Tweedley A C , Chris S. Hallett A , Richard M. Warwick A B , K. Robert Clarke A B and Ian C. Potter A
+ Author Affiliations
- Author Affiliations

A Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia.

B Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, United Kingdom.

C Corresponding author. Email: j.tweedley@murdoch.edu.au

Marine and Freshwater Research 67(3) 327-341 https://doi.org/10.1071/MF14216
Submitted: 28 July 2014  Accepted: 9 February 2015   Published: 23 June 2015

Abstract

Runoff from an extreme storm on 22 March 2010 led, during the next 3 months, to the formation of a pronounced halocline and underlying hypoxia in the upper reaches of the microtidal Swan–Canning Estuary. Benthic macroinvertebrates were sampled between January 2010 and October 2011 at five sites along 10 km of this region. By mid-April, the number of species, total density, Simpson’s evenness index and taxonomic distinctness had declined markedly, crustaceans had disappeared and the densities of annelids and molluscs had declined slightly. These faunal attributes (except Simpson’s index) and species composition did not recover until after the end of the hypoxia. The survival of annelids and loss of crustaceans in this period reflects different sensitivities of these taxa to severe environmental stress. The results emphasise that microtidal estuaries with long residence times are highly vulnerable to the effects of environmental perturbations, particularly during warmer periods of the year.

Additional keywords: crustaceans, estuarine, hydrology, invertebrates, tides.


References

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods.’ (PRIMER-E: Plymouth, UK.)

Bell, S. S. (1982). On the population biology and meiofaunal characteristics of Manayunkia aestuarina (Polychaeta: Sabellidae: Fabricinae) from a South Carolina salt marsh. Estuarine, Coastal and Shelf Science 14, 215–221.
On the population biology and meiofaunal characteristics of Manayunkia aestuarina (Polychaeta: Sabellidae: Fabricinae) from a South Carolina salt marsh.Crossref | GoogleScholarGoogle Scholar |

Bick, A. (1996). Reproduction and larval development of Manayunkia aestuarina (Bourne, 1883) (Polychaeta, Sabellidae) in a coastal region of the southern Baltic. Helgolaender Meeresuntersuchungen 50, 287–298.
Reproduction and larval development of Manayunkia aestuarina (Bourne, 1883) (Polychaeta, Sabellidae) in a coastal region of the southern Baltic.Crossref | GoogleScholarGoogle Scholar |

Borja, Á., Franco, J., and Pérez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40, 1100–1114.
A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlCh&md5=56fa6f00e80d078d56289b4c473cd96fCAS |

Borja, A., Miles, A., Occhipinti-Ambrogi, A., and Berg, T. (2009). Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive. Hydrobiologia 633, 181–196.
Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive.Crossref | GoogleScholarGoogle Scholar |

Brearley, A. (2005) ‘Ernest Hodgkin’s Swanland’, 1st edn. (University of Western Australia Press: Perth, WA.)

Breitburg, D. (2002). Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781.
Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries.Crossref | GoogleScholarGoogle Scholar |

Brooks, S. P. J., Zwaan, A., Thillart, G., Cattani, O., Cortesi, P., and Storey, K. B. (1991). Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: covalent modification of phosphofructokinase and glycogen phosphorylase during anoxia. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 161, 207–212.
Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: covalent modification of phosphofructokinase and glycogen phosphorylase during anoxia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVeqsr4%3D&md5=2ddba7b0b1743d46ead3000d74d2185bCAS |

Buckley, B. W., Sullivan, W., Chan, P., and Leplastrier, M. (2010). Two record breaking Australian hail storms: storm environments, damage characteristics and rarity. In ‘AMS 25th Conference on Severe Local Storms. Abstract Book’, 2010, Denver, CO, USA. (Ed. C. Campbell.) pp. 132–133. (American Meteorological Society: Boston, MA, USA.) Available at http://www.ametsoc.org/MEET/fainst/201025sls_abstract.pdf [Verified 19 April 2015].

Bureau of Meteorology (2010). ‘Severe Thunderstorms in Perth and Southwest Western Australia, 22 March 2010.’ (Western Australian Regional Office Bureau of Meteorology: Perth.)

Buzzelli, C. P., Luettich, R. A., Powers, S. P., Peterson, C. H., McNinch, J. E., Pinckney, J. L., and Paerl, H. W. (2002). Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary. Marine Ecology Progress Series 230, 103–112.
Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)

Clarke, K. R., and Warwick, R. M. (1998). Quantifying structural redundancy in ecological communities. Oecologia 113, 278–289.
Quantifying structural redundancy in ecological communities.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Warwick, R. M. (2001). A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series 216, 265–278.
A further biodiversity index applicable to species lists: variation in taxonomic distinctness.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., Somerfield, P. J., and Gorley, R. N. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366, 56–69.
Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., Tweedley, J. R., and Valesini, F. J. (2014). Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. Journal of the Marine Biological Association of the United Kingdom 94, 1–16.
Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies.Crossref | GoogleScholarGoogle Scholar |

Cottingham, A., Hesp, S. A., Hall, N. G., Hipsey, M. R., and Potter, I. C. (2014). Changes in condition, growth and maturation of Acanthopagrus butcheri (Sparidae) in an estuary reflect the deleterious effects of environmental degradation. Estuarine, Coastal and Shelf Science 149, 109–119.
Changes in condition, growth and maturation of Acanthopagrus butcheri (Sparidae) in an estuary reflect the deleterious effects of environmental degradation.Crossref | GoogleScholarGoogle Scholar |

Dauvin, J.C., and Ruellet, T. (2007). Polychaete/amphipod ratio revisited. Marine Pollution Bulletin 55, 215–224.
Polychaete/amphipod ratio revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1equrrL&md5=2c493e2c06c7cc39d39877992d7bc635CAS | 17070857PubMed |

Diaz, R. J., and Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology – an Annual Review 33, 245–303.

Douglas, G. B., Hamilton, D. P., Gerritse, R., Adeney, J. A., and Coad, D. N. (1997). Sediment geochemistry, nutrient fluxes and water quality in the Swan Estuary, WA. In ‘Managing Algal Blooms: Outcomes from the CSIRO’s Multi-Divisional Blue–Green Algal Program’. (Ed. J. A. Davis.) pp. 15–30. (CSIRO Land and Water: Canberra, ACT.)

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074.
Climate extremes: observations, modeling, and impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVCms7g%3D&md5=856e758ac2e5a29138eb15541f533e3bCAS | 11000103PubMed |

Eldridge, P. M., and Roelke, D. L. (2011). Hypoxia in waters of the coastal zone: causes, effects, and modeling approaches. In ‘Treatise on Estuarine and Coastal Science’. (Eds E. Wolanski and D. McLusky.) pp. 193–215. (Academic Press: Waltham, MA.)

Eyre, B. (1998). Transport, retention and transformation of material in Australian estuaries. Estuaries 21, 540–551.
Transport, retention and transformation of material in Australian estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlOnu74%3D&md5=323cde00916797a494caa3e9e8d2c0cdCAS |

Gaston, G. R., Rakocinski, C. F., Brown, S. S., and Cleveland, C. M. (1998). Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients. Marine and Freshwater Research 49, 833–846.
Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients.Crossref | GoogleScholarGoogle Scholar |

Glasby, C. J. (1986). Population structure and reproductive biology of Ceratonereis limnetica (Polychaeta: Nereididae) at Lower Portland, Hawkesbury River, Australia. Marine Biology 90, 589–595.
Population structure and reproductive biology of Ceratonereis limnetica (Polychaeta: Nereididae) at Lower Portland, Hawkesbury River, Australia.Crossref | GoogleScholarGoogle Scholar |

Gray, J. S., Wu, R. S. S., and Or, Y. Y. (2002). Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238, 249–279.
Effects of hypoxia and organic enrichment on the coastal marine environment.Crossref | GoogleScholarGoogle Scholar |

Hagy, J. D., and Murrell, M. C. (2007). Susceptibility of a northern Gulf of Mexico estuary to hypoxia: an analysis using box models. Estuarine, Coastal and Shelf Science 74, 239–253.
Susceptibility of a northern Gulf of Mexico estuary to hypoxia: an analysis using box models.Crossref | GoogleScholarGoogle Scholar |

Heip, C. H. R., Goosen, N. K., Herman, P. M. J., Kromkamp, J., Middelburg, J. J., and Soetaert, K. (1995). Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology – an Annual Review 33, 1–149.

Hodgkin, E. P., and Hesp, P. (1998). Estuaries to salt lakes: Holocene transformation of the estuarine ecosystems of south-western Australia. Marine and Freshwater Research 49, 183–201.
Estuaries to salt lakes: Holocene transformation of the estuarine ecosystems of south-western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1ahsb0%3D&md5=2912895c8fdafebd5a173382c795bba7CAS |

Hoeksema, S. D., and Potter, I. C. (2006). Diel, seasonal, regional and annual variations in the characteristics of the ichthyofauna of the upper reaches of a large Australian microtidal estuary. Estuarine, Coastal and Shelf Science 67, 503–520.
Diel, seasonal, regional and annual variations in the characteristics of the ichthyofauna of the upper reaches of a large Australian microtidal estuary.Crossref | GoogleScholarGoogle Scholar |

Huntington, T. G. (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology 319, 83–95.
Evidence for intensification of the global water cycle: review and synthesis.Crossref | GoogleScholarGoogle Scholar |

Insurance Council of Australia (2014). Historical disaster statistics. Available at http://www.insurancecouncil.com.au/industry-statistics-data/disaster-statistics/historical-disaster-statistics [Verified 30 October 2014].

Jørgensen, B. B. (1980). Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 34, 68–76.
Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community.Crossref | GoogleScholarGoogle Scholar |

Josefson, A. B., and Widbom, B. (1988). Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Marine Biology 100, 31–40.
Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin.Crossref | GoogleScholarGoogle Scholar |

Kalnejais, L., McMahom, K., and Robb, M. (1999). Swan Canning Estuary, Western Australia. In ‘Australasian Estuarine Systems: Carbon, Nitrogen and Phosphorus Fluxes’. (Eds S. V. Smith and C. J. Crossland.) pp. 74–90. (Land-Ocean Interaction in the Coastal Zone International Project Office: Geesthacht, Germany.)

Kanandjembo, A. N., Platell, M. E., and Potter, I. C. (2001). The benthic macroinvertebrate community of the upper reaches of an Australian estuary that undergoes marked seasonal changes in hydrology. Hydrological Processes 15, 2481–2501.
The benthic macroinvertebrate community of the upper reaches of an Australian estuary that undergoes marked seasonal changes in hydrology.Crossref | GoogleScholarGoogle Scholar |

Karlson, K., Rosenberg, R., and Bonsdorff, E. (2002). Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: a review. Oceanography and Marine Biology – an Annual Review 40, 427–489.

Kurup, R. G., and Hamilton, D. P. (2002). Flushing of dense, hypoxic water from a cavity of the Swan River Estuary, Western Australia. Estuaries 25, 908–915.
Flushing of dense, hypoxic water from a cavity of the Swan River Estuary, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Leonard, D. R. P., Clarke, K. R., Somerfield, P. J., and Warwick, R. M. (2006). The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. Journal of Environmental Management 78, 52–62.
The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mnlslalug%3D%3D&md5=d94b2080df3307f32c19ffff8eab4558CAS |

Lin, J., Xie, L., Pietrafesa, L. J., Shen, J., Mallin, M. A., and Durako, M. J. (2006). Dissolved oxygen stratification in two micro-tidal partially mixed estuaries. Estuarine, Coastal and Shelf Science 70, 423–437.
Dissolved oxygen stratification in two micro-tidal partially mixed estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSktrnE&md5=b916942640f745c8c074a6afb8cac310CAS |

McLusky, D. S., and Elliott, M. (2004). ‘The Estuarine Ecosystem: Ecology, Threats and Management’, 3rd edn. (Oxford University Press: Oxford, UK.)

Middelburg, J. J., and Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 1273–1293.
Coastal hypoxia and sediment biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OhtLvF&md5=c1938a114c117d9cc4a9e1c112d19e97CAS |

Monbet, Y. (1992). Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries 15, 563–571.
Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktFCrsbc%3D&md5=78f878f9d1addb4e0fe1dfcc9aa41ce3CAS |

Nilsson, H. C., and Rosenberg, R. (1994). Hypoxic response of two marine benthic communities. Marine Ecology Progress Series 115, 209–217.
Hypoxic response of two marine benthic communities.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., Pinckney, J. L., Fear, J. M., and Peierls, B. L. (1998). Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, NC, USA. Marine Ecology Progress Series 166, 17–25.
Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, NC, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsl2nu7k%3D&md5=589b424259c3e427dd48e3d99ec57113CAS |

Pearson, T. H., and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology – an Annual Review 16, 229–311.

Potter, I. C., Loneragan, N. R., Lenanton, R. C. J., and Chrystal, P. J. (1983). Blue-green algae and fish population changes in a eutrophic estuary. Marine Pollution Bulletin 14, 228–233.
Blue-green algae and fish population changes in a eutrophic estuary.Crossref | GoogleScholarGoogle Scholar |

Potter, I. C., Ivantsoff, W., Cameron, R., and Minnard, J. (1986a). Life cycles and distribution of atherinids in the marine and estuarine waters of southern Australia. Hydrobiologia 139, 23–40.
Life cycles and distribution of atherinids in the marine and estuarine waters of southern Australia.Crossref | GoogleScholarGoogle Scholar |

Potter, I. C., Penn, J. W., and Brooker, K. S. (1986b). Life cycle of the western school prawn, Metapenaeus dalli Racek, in a Western Australian estuary. Marine and Freshwater Research 37, 95–103.
Life cycle of the western school prawn, Metapenaeus dalli Racek, in a Western Australian estuary.Crossref | GoogleScholarGoogle Scholar |

Potter, I. C., Warwick, R. M., Hall, N. G., and Tweedley, J. R. (2015). The physico-chemical characteristics, biota and fisheries of estuaries. In ‘Freshwater Fisheries Ecology’. (Ed. J. Craig.) pp. 48–79. (Wiley-Blackwell: Hoboken, NJ, USA.)

Price, R., and Warwick, R. M. (1980). The effect of temperature on the respiration rate of meiofauna. Oecologia 44, 145–148.
The effect of temperature on the respiration rate of meiofauna.Crossref | GoogleScholarGoogle Scholar |

Rakocinski, C. F., Brown, S. S., Gaston, G. R., Heard, R. W., Walker, W. W., and Summers, J. K. (1997). Macrobenthic responses to natural and contaminant-related gradients in northern Gulf of Mexico estuaries. Ecological Applications 7, 1278–1298.
Macrobenthic responses to natural and contaminant-related gradients in northern Gulf of Mexico estuaries.Crossref | GoogleScholarGoogle Scholar |

Ranasinghe, R., and Pattiaratchi, C. (1998). Flushing characteristics of a seasonally open tidal inlet: a numerical study. Journal of Coastal Research 14, 1405–1421.

Reise, K. (1982). Long-term changes in the macrobenthic invertebrate fauna of the Wadden Sea: are polychaetes about to take over? Netherlands Journal of Sea Research 16, 29–36.
Long-term changes in the macrobenthic invertebrate fauna of the Wadden Sea: are polychaetes about to take over?Crossref | GoogleScholarGoogle Scholar |

Reynoldson, T., and Metcalfe-Smith, J. (1992). An overview of the assessment of aquatic ecosystem health using benthic invertebrates. Journal of Aquatic Ecosystem Health 1, 295–308.
An overview of the assessment of aquatic ecosystem health using benthic invertebrates.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, R. (1980). Effect of oxygen deficiency on benthic macrofauna. In ‘Fjord Oceanography’. (Eds J. H. Freeland, D. M. Farmer and C. D. Levings.) pp. 499–514. (Plenum Publishing Corporation: New York.)

Savenije, H. H. G. (2005). ‘Salinity and Tides in Alluvial Estuaries.’ (Elsevier Science: Amsterdam.)

Shen, P.-P., Zhou, H., and Gu, J.-D. (2010). Patterns of polychaete communities in relation to environmental perturbations in a subtropical wetland of Hong-Kong. Journal of the Marine Biological Association of the United Kingdom 90, 923–932.
Patterns of polychaete communities in relation to environmental perturbations in a subtropical wetland of Hong-Kong.Crossref | GoogleScholarGoogle Scholar |

Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688.
Measurement of diversity.Crossref | GoogleScholarGoogle Scholar |

Somerfield, P. J., Clarke, K. R., and Warwick, R. M. (2008). Simpson index. In ‘Encyclopaedia of Ecology. Vol 4’. (Eds S. E. Jørgensen and B. D. Fath.) pp. 3252–3255. (Elsevier: Oxford, UK.)

Spencer, R. (1956). Studies in Australian estuarine hydrology. II. The Swan River. Marine and Freshwater Research 7, 193–253.
Studies in Australian estuarine hydrology. II. The Swan River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XnvFantQ%3D%3D&md5=3cb3707ca04db494655247e20e7e0ad3CAS |

Steckbauer, A., Duarte, C. M., Carstensen, J., Vaquer-Sunyer, R., and Conley, D. J. (2011). Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environmental Research Letters 6, 025003.
Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery.Crossref | GoogleScholarGoogle Scholar |

Stephens, R., and Imberger, J. (1996). Dynamics of the Swan River Estuary: the seasonal variability. Marine and Freshwater Research 47, 517–529.
Dynamics of the Swan River Estuary: the seasonal variability.Crossref | GoogleScholarGoogle Scholar |

Sturdivant, S. K., Díaz, R., Llansó, R., and Dauer, D. (2014). Relationship between hypoxia and macrobenthic production in Chesapeake Bay. Estuaries and Coasts 37, 1219–1232.
Relationship between hypoxia and macrobenthic production in Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaku7bJ&md5=0ad752a2e5ba616fdde706909abca75fCAS |

Tamai, K. (1993). Tolerance of Theora fragilis (Bivalvia, Semelidae) to low concentrations of dissolved oxygen. Nippon Suisan Gakkai Shi 59, 615–620.
Tolerance of Theora fragilis (Bivalvia, Semelidae) to low concentrations of dissolved oxygen.Crossref | GoogleScholarGoogle Scholar |

Teske, P. R., and Wooldridge, T. H. (2003). What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs sediment partical size. Estuarine, Coastal and Shelf Science 57, 225–238.
What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs sediment partical size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1aqsLo%3D&md5=220d422ca875e5d929736e26ba9403baCAS |

Theede, H. (1973). Comparative studies of the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates. Netherlands Journal of Sea Research 7, 244–252.
Comparative studies of the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlslKqtg%3D%3D&md5=f50d663c7a98a2c53227a56c1fd63a0cCAS |

Tweedley, J. R., Warwick, R. M., Valesini, F. J., Platell, M. E., and Potter, I. C. (2012). The use of benthic macroinvertebrates to establish a benchmark for evaluating the environmental quality of microtidal, temperate southern hemisphere estuaries. Marine Pollution Bulletin 64, 1210–1221.
The use of benthic macroinvertebrates to establish a benchmark for evaluating the environmental quality of microtidal, temperate southern hemisphere estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Chsr4%3D&md5=aa375922ab587a6b2613e55ea1ee1b16CAS | 22482867PubMed |

Tweedley, J. R., Warwick, R. M., Clarke, K. R., and Potter, I. C. (2014). Family-level AMBI is valid for use in the north-eastern Atlantic but not for assessing the health of microtidal Australian estuaries. Estuarine, Coastal and Shelf Science 141, 85–96.
Family-level AMBI is valid for use in the north-eastern Atlantic but not for assessing the health of microtidal Australian estuaries.Crossref | GoogleScholarGoogle Scholar |

Tweedley, J. R., Warwick, R. M., and Potter, I. C. (2015). Can biotic indicators distinguish between natural and anthropogenic environmental stress in estuaries? Journal of Sea Research 102, 10–21.
Can biotic indicators distinguish between natural and anthropogenic environmental stress in estuaries?Crossref | GoogleScholarGoogle Scholar |

Uncles, R. J., Stephens, J. A., and Smith, R. E. (2002). The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time. Continental Shelf Research 22, 1835–1856.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time.Crossref | GoogleScholarGoogle Scholar |

Uncles, R. J., Stephens, J. A., and Law, D. J. (2006). Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: flocs, fluid mud, stationary suspensions and tidal bores. Estuarine, Coastal and Shelf Science 67, 30–52.
Turbidity maximum in the macrotidal, highly turbid Humber Estuary, UK: flocs, fluid mud, stationary suspensions and tidal bores.Crossref | GoogleScholarGoogle Scholar |

Valesini, F. J., Tweedley, J. R., Clarke, K. R., and Potter, I. C. (2014). The importance of regional, system-wide and local spatial scales in structuring temperate estuarine fish communities. Estuaries and Coasts 37, 525–547.
The importance of regional, system-wide and local spatial scales in structuring temperate estuarine fish communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVSit7o%3D&md5=2d4a498efb6bc978fab00b178256db33CAS |

Vaquer-Sunyer, R., and Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105, 15452–15457.
Thresholds of hypoxia for marine biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gnt7zI&md5=c454861f956cdc1d1a800598fbc662c1CAS | 18824689PubMed |

Warwick, R. M., and Clarke, K. R. (1993). Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. Marine Ecology Progress Series 92, 221–232.
Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data.Crossref | GoogleScholarGoogle Scholar |

Warwick, R. M., and Clarke, K. R. (1995). New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series 129, 301–305.
New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress.Crossref | GoogleScholarGoogle Scholar |

Warwick, R. M., and Clarke, K. R. (1998). Taxonomic distinctness and environmental assessment. Journal of Applied Ecology 35, 532–543.
Taxonomic distinctness and environmental assessment.Crossref | GoogleScholarGoogle Scholar |

Warwick, R. M., and Clarke, K. R. (2001). Practical measures of marine biodiversity based on relatedness of species. Oceanography and Marine Biology – an Annual Review 39, 207–231.

Weisberg, S., Ranasinghe, J., Dauer, D., Schaffner, L., Diaz, R., and Frithsen, J. (1997). An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries and Coasts 20, 149–158.
An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Wells, F. E. (1984). ‘A Guide to the Common Molluscs of South-western Australian Estuaries.’ (Western Australian Museum: Perth.)

Whitfield, A. K. (1995). Mass mortalities of fish in South African estuaries. Southern African Journal of Aquatic Sciences 21, 29–34.
Mass mortalities of fish in South African estuaries.Crossref | GoogleScholarGoogle Scholar |

Whitfield, A., and Elliott, M. (2011). Ecosystem and biotic classifications of estuaries and coasts. In ‘Treatise on Estuarine and Coastal Science’. (Eds E. Wolanski and D. S. McLusky.) pp. 99–124. (Academic Press: Waltham, MA.)

Wildsmith, M. D., Rose, T. H., Potter, I. C., Warwick, R. M., Clarke, K. R., and Valesini, F. J. (2009). Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication. Marine Pollution Bulletin 58, 1250–1262.
Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVehtLrM&md5=fb788d1280755eb9688ac6291ca62c6eCAS | 19616265PubMed |

Wildsmith, M. D., Rose, T. H., Potter, I. C., Warwick, R. M., and Clarke, K. R. (2011). Benthic macroinvertebrates as indicators of environmental deterioration in a large microtidal estuary. Marine Pollution Bulletin 62, 525–538.
Benthic macroinvertebrates as indicators of environmental deterioration in a large microtidal estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyks7c%3D&md5=74c03702c30fb7dac24c9cbe809d3663CAS | 21195437PubMed |

Wolanski, E. (Ed.) (2007). ‘Estuarine Ecohydrology.’ (Elsevier: Amsterdam.)