Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Relationships between soils and plant community composition and structure in a Neotropical savanna mosaic

Eddie Lenza A * , Ana Clara Abadia A , Arthur Veríssimo A , Hellen Kezia Almada https://orcid.org/0000-0002-7701-553X A , Lorrayne Aparecida Gonçalves A and Daielle Carrijo https://orcid.org/0000-0003-0818-7140 A
+ Author Affiliations
- Author Affiliations

A Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso (UNEMAT), PO Box 08, 78690-000 Nova Xavantina, MT, Brazil.

* Correspondence to: eddielenza@yahoo.com.br

Handling Editor: Lynda Prior

Australian Journal of Botany 70(8) 549-559 https://doi.org/10.1071/BT22022
Submitted: 15 March 2022  Accepted: 25 October 2022   Published: 7 December 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context: How woody flora richness and composition in different vegetation communities in a Neotropical savanna are explained by chemical and physical soil properties?

Objective: Determinate the relationships between the topsoil properties, richness, and composition of woody flora in the following six vegetation communities of the Brazilian Cerrado: four non-waterlogged, one seasonally waterlogged and one permanently waterlogged.

Methods: We used rarefaction analysis to compare richness among vegetation communities and Canonical Redundancy Analysis to evaluate the relationships between soil and floristic composition.

Key results: We showed clear edaphic differences between Palm Swamps (higher organic matter), Gallery Forest (less fertile), Woodland Cerrado (finer soils texture) and Dense Cerrado, Typical Cerrado and Murundu Field (more fertile and coarser soils texture). The species richness was highest in the Gallery Forest and Typical Cerrado and lowest in Palm Swamps. The low species richness in Palm Swamps was caused by waterlogging, inferred by the high organic-matter content of the soil. The differences and similarities in species composition among vegetation communities were explained by waterlogging, fertility and texture of soils.

Conclusions: Changes in soil properties and woody species composition among vegetation communities can be abrupt, such as those among Palm Swamps, Gallery Forest and other vegetation communities, or gradual as those among Woodland Cerrado, Dense Cerrado, Typical Cerrado and Murundu Field.

Implications: The high local richness (alfa diversity) and clear species turnover between some vegetation communities (beta diversity) with difference in soil properties justify the necessity of conserving the complex vegetation mosaic in the studied region, once it is located on the Brazil’s agricultural frontier.

Keywords: beta diversity, Brazilian Cerrado, community assembly, ecology, environmental filter, plant community, soil–plant relationship, species selection.


References

Abreu RCR, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Science Advances 3, e1701284
The biodiversity cost of carbon sequestration in tropical savanna.Crossref | GoogleScholarGoogle Scholar |

Amorim PK, Batalha MA (2007) Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil). Acta Oecologica 32, 319–327.
Soil-vegetation relationships in hyperseasonal cerrado, seasonal cerrado, and wet grassland in Emas National Park (central Brazil).Crossref | GoogleScholarGoogle Scholar |

Araújo FDC, Tng DYP, Apgaua DMG, Morel JD, Pereira DGS, Santos PF, Santos RMd (2019) Flooding regime drives tree community structure in Neotropical dry forests. Journal of Vegetation Science 30, 1195–1205.
Flooding regime drives tree community structure in Neotropical dry forests.Crossref | GoogleScholarGoogle Scholar |

Assis ACC, Coelho RM, da Silva Pinheiro E, Durigan G (2011) Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecology 212, 1135–1147.
Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation.Crossref | GoogleScholarGoogle Scholar |

Bambi P, Rezende RdS, Cruz TMS, Batista JEdA, Miranda FGG, Vieira dos Santos L, Gonçalves Júnior JF (2017) Diversidade da flora fanerogâmica de três matas de galeria no bioma Cerrado. Heringeriana 10, 147–167.
Diversidade da flora fanerogâmica de três matas de galeria no bioma Cerrado.Crossref | GoogleScholarGoogle Scholar |

Barbosa DCdF, Marimon BS, Lenza E, Marimon Junior BH, Oliveira EAd, Maracahipes L (2011) Estrutura da vegetação lenhosa em dois fragmentos naturais de florestas inundáveis (impucas) no Parque Estadual do Araguaia, Mato Grosso. Revista Árvore 35, 457–471.
Estrutura da vegetação lenhosa em dois fragmentos naturais de florestas inundáveis (impucas) no Parque Estadual do Araguaia, Mato Grosso.Crossref | GoogleScholarGoogle Scholar |

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |

Brady NC, Weil RR (2013) ‘Elementos da Natureza e Propriedades dos Solos.’ (Bookman: Porto Alegre, Brazil)

Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574.
Associations between species and groups of sites: indices and statistical inference.Crossref | GoogleScholarGoogle Scholar |

Cerri CEP, Cerri CC, Maia SMF, Cherubin MR, Feigl BJ, Lal R (2018) Reducing Amazon deforestation through agricultural intensification in the Cerrado for advancing food security and mitigating climate change. Sustainability 10, 989
Reducing Amazon deforestation through agricultural intensification in the Cerrado for advancing food security and mitigating climate change.Crossref | GoogleScholarGoogle Scholar |

Chacón-Moreno E, Naranjo M, Acevedo D (2004) Direct and indirect vegetation-environment relationship in the flooded savanna, Venezuela. Ecotropicos 17, 25–37.

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67.
Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.Crossref | GoogleScholarGoogle Scholar |

Cole MM (1986) ‘The savannas: biogeography and geobotany.’ (Academic Press: London, UK)

Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481, 321–328.
The Amazon basin in transition.Crossref | GoogleScholarGoogle Scholar |

Dietzsch L, Rezende AV, Pinto JRR (2006) Caracterização da flora arbórea de dois fragmentos de mata de galeria do Parque Canjerana, DF. Cerne 12, 201–210.

Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.
Species assemblages and indicator species: the need for a flexible asymmetrical approach.Crossref | GoogleScholarGoogle Scholar |

Eiten G (1975) The vegetation of the Serra do Roncador. Biotropica 7, 112–135.
The vegetation of the Serra do Roncador.Crossref | GoogleScholarGoogle Scholar |

Elias F, Marimon Junior BH, de Oliveira FJM, de Oliveira JCA, Marimon BS (2019) Soil and topographic variation as a key factor driving the distribution of tree flora in the Amazonia/Cerrado transition. Acta Oecologica 100, 103467
Soil and topographic variation as a key factor driving the distribution of tree flora in the Amazonia/Cerrado transition.Crossref | GoogleScholarGoogle Scholar |

Embrapa (2017) ‘Manual de métodos de análise de solo.’ 3th edn. (Embrapa: Brasília, Brazil)

Ferraz TM, Saraiva RVC, Leonel LV, Reis FFD, Figueredo FAMMA, Reis FDO, Sousa JRPD, Muniz FH (2020) Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone. Anais da Academia Brasileira de Ciências 92, e20181109
Cerrado physiognomies in Chapada das Mesas National Park (Maranhão, Brazil) revealed by patterns of floristic similarity and relationships in a transition zone.Crossref | GoogleScholarGoogle Scholar |

Ferreira JN, Bustamante MMdC, Davidson EA (2009) Linking woody species diversity with plant available water at a landscape scale in a Brazilian savanna. Journal of Vegetation Science 20, 826–835.
Linking woody species diversity with plant available water at a landscape scale in a Brazilian savanna.Crossref | GoogleScholarGoogle Scholar |

Ferreira-Júnior WG, Schaefer CEGR, Cunha CN, Duarte TG, Chieregatto LC, Carmo FMS (2016) Flood regime and water table determines tree distribution in a forest-savanna gradient in the Brazilian Pantanal. Anais da Academia Brasileira de Ciências 88, 719–731.
Flood regime and water table determines tree distribution in a forest-savanna gradient in the Brazilian Pantanal.Crossref | GoogleScholarGoogle Scholar |

Flora do Brasil (2020) Algas, fungos e plantas. Available at http://floradobrasil.jbrj.gov.br [Accessed 4 June 2021]

Graves S, Piepho HP, Selzer L, Dorai-Raj S (2019) MultcompView: visualizations of paired comparisons. R package version 0.1-8. Available at https://CRAN.R-project.org/package=multcompView

Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems 24, 5–22.
Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection.Crossref | GoogleScholarGoogle Scholar |

Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280.
Ecologically meaningful transformations for ordination of species data.Crossref | GoogleScholarGoogle Scholar |

Legendre P, Legendre L (1998) ‘Numerical ecology.’ 2nd English edn. (Elsevier: Amsterdam, Netherlands)

Leite MB, Xavier RO, Oliveira PTS, Silva FKG, Silva Matos DM (2018) Groundwater depth as a constraint on the woody cover in a Neotropical Savanna. Plant and Soil 426, 1–15.
Groundwater depth as a constraint on the woody cover in a Neotropical Savanna.Crossref | GoogleScholarGoogle Scholar |

Lenth RV (2021). Emmeans: estimated marginal means, aka least-squares means. R package version 1.6.0. Available at https://CRAN.R-project.org/package=emmeans

Lenza E, Pinto JRR, Pinto AdS, Maracahipes L, Bruziguessi EP (2011) Comparação da vegetação arbustivo-arbórea de uma área de cerrado rupestre na Chapada dos Veadeiros, Goiás, e áreas de cerrado sentido restrito do Bioma Cerrado. Revista Brasileira de Botânica 34, 247–259.
Comparação da vegetação arbustivo-arbórea de uma área de cerrado rupestre na Chapada dos Veadeiros, Goiás, e áreas de cerrado sentido restrito do Bioma Cerrado.Crossref | GoogleScholarGoogle Scholar |

Lenza E, Santos JO, Maracahipes-Santos L (2015) Species composition, diversity, and vegetation structure in a gallery forest-cerrado sensu stricto transition zone in eastern Mato Grosso, Brazil. Acta Botanica Brasilica 29, 327–338.
Species composition, diversity, and vegetation structure in a gallery forest-cerrado sensu stricto transition zone in eastern Mato Grosso, Brazil.Crossref | GoogleScholarGoogle Scholar |

Maracahipes-Santos L, Lenza E, Santos JO, Mews HA, Oliveira B (2017) Effects of soil and space on the woody species composition and vegetation structure of three Cerrado phytophysiognomies in the Cerrado–Amazon transition. Brazilian Journal of Biology 77, 830–839.
Effects of soil and space on the woody species composition and vegetation structure of three Cerrado phytophysiognomies in the Cerrado–Amazon transition.Crossref | GoogleScholarGoogle Scholar |

Maracahipes-Santos L, Silvério DV, Macedo MN, Maracahipes L, Jankowski KJ, Paolucci LN, Neill C, Brando PM (2020) Agricultural land-use change alters the structure and diversity of Amazon riparian forests. Biological Conservation 252, 108862
Agricultural land-use change alters the structure and diversity of Amazon riparian forests.Crossref | GoogleScholarGoogle Scholar |

Marimon BS, Marimon-Junior BH, Lima HS, Jancoski HS, Franczak DD, Mews HA, Moresco MC (2008) ‘Pantanal do Araguaia: ambiente e povo: guia de ecoturismo.’ (UNEMAT: Cáceres, Brazil)

Marimon BS, Colli GR, Marimon-Junior BH, Mews HA, Eisenlohr PV, Feldpausch TR, Phillips OL (2015) Ecology of floodplain campos de murundus savanna in southern Amazonia. International Journal of Plant Sciences 176, 670–681.
Ecology of floodplain campos de murundus savanna in southern Amazonia.Crossref | GoogleScholarGoogle Scholar |

Marimon Junior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Botanica Brasilica 19, 913–926.
Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil.Crossref | GoogleScholarGoogle Scholar |

Miguel A, Marimon BS, Maracahipes L, Oliveira EAd, Marimon Junior BH (2011) Mudanças na estrutura da vegetação lenhosa em três porções da mata de galeria do Córrego Bacaba (1999-2006), Nova Xavantina-MT. Revista Árvore 35, 725–735.
Mudanças na estrutura da vegetação lenhosa em três porções da mata de galeria do Córrego Bacaba (1999-2006), Nova Xavantina-MT.Crossref | GoogleScholarGoogle Scholar |

Moe SR, Mobæk R, Narmo AK (2009) Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology 202, 31–40.
Mound building termites contribute to savanna vegetation heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Moreno MIC, Schiavini I (2001) Relação entre vegetação e solo em um gradiente florestal na Estação Ecológica do Panga, Uberlândia (MG). Brazilian Journal of Botany 24, 537–544.
Relação entre vegetação e solo em um gradiente florestal na Estação Ecológica do Panga, Uberlândia (MG).Crossref | GoogleScholarGoogle Scholar |

Murphy BP, Andersen AN, Parr CL (2016) The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20150319
The underestimated biodiversity of tropical grassy biomes.Crossref | GoogleScholarGoogle Scholar |

Muvengwi J, Ndagurwa HGT, Nyenda T, Mbiba M (2016) Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem. Acta Oecologica 76, 13–21.
Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem.Crossref | GoogleScholarGoogle Scholar |

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Nogueira MF, Schiavini I (2003) Composição florística e estrutura da comunidade arbórea de uma mata de galeria inundavel em Uberlândia, MG, Brasil. Bioscience Journal 19, 89–98. https://seer.ufu.br/index.php/biosciencejournal/article/view/6457

Nogueira EM, Nelson BW, Fearnside PM, França MB, de Oliveira ACA (2008) Tree height in Brazil’s ‘arc of deforestation’: shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecology and Management 255, 2963–2972.
Tree height in Brazil’s ‘arc of deforestation’: shorter trees in south and southwest Amazonia imply lower biomass.Crossref | GoogleScholarGoogle Scholar |

Ogle DH, Wheeler P, Dinno A (2020) FSA: fisheries stock analysis. R package version 0.8.22.9000. Available at https://github.com/droglenc/FSA. [Accessed 4 July 2019]

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.5-1. Available at https://CRAN.R-project.org/package=vegan

Oliveira CPd, Francelino MR, Cysneiros VC, de Andrade FC, Booth MC (2015) Composição florística e estrutura de um cerrado sensu stricto no oeste da Bahia. Cerne 21, 545–552.
Composição florística e estrutura de um cerrado sensu stricto no oeste da Bahia.Crossref | GoogleScholarGoogle Scholar |

Oliveira-Filho AT (1992) Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin hypothesis. Journal of Tropical Ecology 8, 1–19.
Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin hypothesis.Crossref | GoogleScholarGoogle Scholar |

Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado biome. In ‘The Cerrados of Brazil’. (Eds PS Oliveira, RJ Marquis) pp. 91–120. (Columbia University Press: New York, NY, USA; and Chichester, UK) https://doi.org/10.7312/oliv12042-005

Ramos MVV, Haridasan M, Araújo GMd (2014) Caracterização dos solos e da estrutura fitossociológica da vegetação de Veredas da Chapada no Triângulo Mineiro. Fronteiras: Journal of Social, Technological and Environmental Science 3, 180–210.
Caracterização dos solos e da estrutura fitossociológica da vegetação de Veredas da Chapada no Triângulo Mineiro.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2022) ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing). Available at https://www.R-project.org/. [Accessed July 2022]

Reatto A, Correia JR, Spera ST (2008) Solos do bioma Cerrado: aspectos pedológicos. In ‘Cerrado: ambiente e flora’. (Eds SM Sano, SP Almeida) pp. 47–86. (Embrapa: Planaltina, Brazil)

Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do bioma Cerrado. In ‘Cerrado: ecologia e flora’. (Eds SM Sano, SP Almeida, JF Ribeiro) pp. 151–212. (Embrapa: Planaltina, Brazil)

Rodrigues PMS, Silva JO, Schaefer CEGR (2019) Edaphic properties as key drivers for woody species distributions in tropical savannic and forest habitats. Australian Journal of Botany 67, 70–80.
Edaphic properties as key drivers for woody species distributions in tropical savannic and forest habitats.Crossref | GoogleScholarGoogle Scholar |

Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil–vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecology 160, 1–16.
Soil–vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Sampaio AB, Walter BMT, Felfili JM (2000) Diversidade e distribuição de espécies arbóreas em duas matas de galeria na micro-bacia do Riacho Fundo, Distrito Federal. Acta Botanica Brasilica 14, 197–214.
Diversidade e distribuição de espécies arbóreas em duas matas de galeria na micro-bacia do Riacho Fundo, Distrito Federal.Crossref | GoogleScholarGoogle Scholar |

Sano EE, Rodrigues AA, Martins ES, Bettiol GM, Bustamante MMC, Bezerra AS, Couto AF, Vasconcelos V, Schüler J, Bolfe EL (2019) Cerrado ecoregions: a spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management 232, 818–828.
Cerrado ecoregions: a spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation.Crossref | GoogleScholarGoogle Scholar |

Silva JF, Fariñas MR, Felfili JM, Klink CA (2006) Spatial heterogeneity, land use and conservation in the Cerrado region of Brazil. Journal of Biogeography 33, 536–548.
Spatial heterogeneity, land use and conservation in the Cerrado region of Brazil.Crossref | GoogleScholarGoogle Scholar |

Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R, Latawiec AE, Oliveira Filho FJB, Scaramuzza CAdM, Scarano FR, Soares-Filho B, Balmford A (2017) Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution 1, 99
Moment of truth for the Cerrado hotspot.Crossref | GoogleScholarGoogle Scholar |

Suganuma MS, Torezan JMD, Durigan G (2018) Environment and landscape rather than planting design are the drivers of success in long-term restoration of riparian Atlantic forest. Applied Vegetation Science 21, 76–84.
Environment and landscape rather than planting design are the drivers of success in long-term restoration of riparian Atlantic forest.Crossref | GoogleScholarGoogle Scholar |

The Angiosperm Phylogeny Group Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1–20.
An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV.Crossref | GoogleScholarGoogle Scholar |

Torello-Raventos M, Feldpausch TR, Veenendaal E, et al. (2013) On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant, Ecology & Diversity 6, 101–137.
On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions.Crossref | GoogleScholarGoogle Scholar |

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) ‘Mixed effects models and extensions in ecology with R.’ (Springer: New York, NY, USA)