Skip to main content
Log in

Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa

  • Research note
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The effect of Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa on the growth, chlorophyll, nitrogen, phosphorus and potassium contents and on the root-rot disease complex of chickpea (caused by Meloidogyne incognita and Macrophomina phaseolina) were observed. Inoculation of plants with G. intraradices, P. putida and P. polymyxa alone and in combination significantly increased plant growth, pod number, chlorophyll, nitrogen, phosphorus and potassium contents and reduced galling, nematode multiplication and root-rot index. Inoculation of plants with P. putida most effectively reduced galling and nematode multiplication, followed by G. intraradices and P. polymyxa. Combined inoculation of plants with G. intraradices, P. putida and P. polymyxa caused the greatest reduction in galling, nematode multiplication and root-rot index. Pathogens had adverse effects on root colonisation by G. intraradices, while root colonisation by arbuscular mycorrhizal fungus was increased in the presence of P. putida and P. polymyxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Similar content being viewed by others

References

  • Akkopru A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. Journal of Phytopathology 153, 544–550. doi: 10.1111/j.1439-0434.2005.01018.x

    Article  Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peak into the 21st century. Mycorrhizal Research 100, 769–782.

    Article  Google Scholar 

  • Alström S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterisation with rhizosphere pseudomonads. The Journal of General and Applied Microbiology 37, 495–501.

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology 24, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3–42. doi: 10.1007/ s005720100097

    Article  Google Scholar 

  • Bagyaraj DJ, Manjunath A, Reddy DDR (1979) Interaction of vesicular arbuscular mycorrhizas with root knot nematodes in tomato. Plant and Soil 51, 397–403. doi: 10.1007/BF02197786

    Article  Google Scholar 

  • Barea JM, Azcon R, Azcon-Anguillar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81, 343–351. doi: 10.1023/A:1020588701325

    Article  CAS  PubMed  Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology 48, 159–169. doi: 10.1139/w02-002

    Article  CAS  PubMed  Google Scholar 

  • Bødker L, Kjoller R, Rosendahl S (1998) Effect of phosphate and arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8, 169–174. doi: 10.1007/s005720050230

    Article  Google Scholar 

  • Broadbent P, Baker KFM, Franks N, Holland J (1977) Effect of Bacillus sp. on increased growth of seedlings in steamed and non treated soil. Phytopathology 67, 1027–1034.

    Article  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizae and plant pathogens. Phytopathology 72, 1115–1119.

    Google Scholar 

  • Dospekhov BA (1984) ‘Field experimentation: statistical procedures.’ (Mir Publishers: Moscow, Russia)

    Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13, 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subba Row Y (1925) The colorimetric determination of phosphorus. The Journal of Biological Chemistry 60, 375–400.

    Google Scholar 

  • Gamliel A, Katan J (1993) Suppression of major and minor pathogens by fluorescent pseudomonads in solarized and non-solarized soil. Phytopathology 83, 68–75.

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. The New Phytologist 84, 498–500.

    Google Scholar 

  • Glick BR (1994) The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41, 109–117.

    Article  Google Scholar 

  • Hussey RS, Roncadori RW (1982) Vesicular arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Disease 66, 9–14.

    Article  Google Scholar 

  • Ibijbijen J, Urquiage S, Ismaili M, Alves BJR, Boodey RM (1996) Effect of arbuscular mycorrhiza on uptake of nitrogen by Brachiaria arrecta and Sorghum vulgare from soil labeled for several years with 15N. The New Phytologist 133, 487–494. doi: 10.1111/j.1469-8137.1996.tb01916.x

    Article  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiology Ecology 22, 325–334. doi: 10.1111/j.1574-6941.1997.tb00384.x

    Article  CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86, 149–155.

    Article  CAS  Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to disease. In ‘Arbuscular mycorrhizas: physiology and function’. (Ed. Y Kapulnik) pp. 345–367. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

    Google Scholar 

  • Lindner RC (1944) Rapid analytical method for some of the more common inorganic constituents of plant tissues. Plant Disease 66, 9–14.

    Google Scholar 

  • Oedjijono M, Line A, Dragar C (1993) Isolation of bacteria antagonistic to a range of plant pathogenic fungi. Soil Biology & Biochemistry 25, 247–250. doi: 10.1016/0038-0717(93)90034-9

    Article  Google Scholar 

  • Oostendrop M, Sikora RA (1989) Utilization of antagonistic rhizobacteria as seed treatment for the biological control of Heterodera schachtii in sugarbeet. Revue de Nematology 12, 77–83.

    Google Scholar 

  • Ozgonen H, Bicici M, Erkilic A (1999) The effect of salicylic acid and endomycorrhizal fungus Glomus intraradices on plant development of tomato and Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. Turkish Journal of Agriculture and Forestry 25, 25–29.

    Google Scholar 

  • van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth-promoting Pseudomonas spp. strain WCS417r induces resistance in carnation to Fusarium wilt. Netherlands Journal of Plant Pathology 98, 129–139. doi: 10.1007/BF01996325

    Article  Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) Anovel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell 10, 1571–1580. doi: 10.1105/tpc.10.9.1571

    Article  CAS  PubMed  Google Scholar 

  • Porter WM (1979) The “most probable number” method for enumerating infective propagules of vesicular-arbuscular mycorrhizal fungi in soil. Australian Journal of Soil Research 17, 515–519. doi: 10.1071/SR9790515

    Article  Google Scholar 

  • Reddy PP (1974) Studies on the action of amino acids on the root-knot nematode Meloidogyne incognita. PhD Thesis, University of Agricultural Sciences, Bangalore, India.

    Google Scholar 

  • Riker AJ, Riker RS (1936) ‘Introduction to research on plant diseases.’ (John S. Swift Co. Inc.: New York)

    Google Scholar 

  • Schonbeck F (1979) Endomycorrhiza in relation to plant disease. In ‘Soil borne plant pathogens’. (Eds B Schipper, W Gams) pp. 271–280. (Academic Press: New York)

    Google Scholar 

  • Siddiqui ZA, Husain SI (1991) Interaction of Meloidogyne incognita race 3 and Macrophomina phaseolina in root-rot disease complex of chickpea. Nematologia Meditteranea 19, 237–239.

    Google Scholar 

  • Siddiqui ZA, Husain SI (1992) Interaction of Meloidogyne incognita race 3, Macrophomina phaseolina and Bradyrhizobium sp. in root-rot disease complex of chickpea, Cicer arietinum. Fundamental and Applied Nematology 16, 491–494.

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Brandyrhizobium japonicum and Glomus fasciculatum on pigeon pea. Fundamental and Applied Nematology 18, 559–566.

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technology 69, 167–179. doi: 10.1016/S0960-8524(98)00122-9

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Iqbal A, Mahmood I (2001) Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology 16, 179–185. doi: 10.1016/S0929-1393(00)00083-4

    Article  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2006) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth promoting rhizobacteria on lentil. World Journal of Microbiology & Biotechnology. doi: 10.1007/s11274-006-9244-z

  • Smith SE, Read DJ (1997) ‘Mycorrhizal symbiosis.’ 2nd edn. (Academic Press: London)

    Google Scholar 

  • Southey JF (1986) Laboratory method for work with plant and soil nematodes. Ministry of Agriculture, Fisheries & Food, Her Majesty’s Stationary Office, London, UK.

    Google Scholar 

  • Suresh CK (1980) Interaction between vesicular arbuscular mycorrhizal and root knot nematode in tomato. M.Sc. (Agric.) Thesis, University of Agricultural Sciences, Bangalore, India.

    Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biology&Biochemistry 31, 1847–1852. doi: 10.1016/S0038-0717(99)00113-3

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81, 1508–1512.

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86, 221–224.

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology 26, 379–407. doi: 10.1146/annurev.py.26.090188.002115

    Article  Google Scholar 

  • Yuen GY, Godoy G, Steadman JR, Kerr ED, Craig ML (1991) Epiphytic colonization of dry edible bean by bacteria antagonistic to Sclerotinia sclerotinum and potential for biological control of white mold disease. Biological Control 1, 293–301. doi: 10.1016/1049-9644(91)90081-A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtar, M.S., Siddiqui, Z.A. Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa . Australasian Plant Pathology 36, 175–180 (2007). https://doi.org/10.1071/AP07006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP07006

Keywords

Navigation