Skip to main content

Advertisement

Log in

Post-consumer waste wood in attributive product LCA

Context specific evaluation of allocation procedures in a functionalistic conception of LCA

  • Wood and Other Renewable Resources (Subject Editor: Jörg Schweinle)
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Background

In product life cycle assessment (LCA), the attribution of environmental interventions to a product under study is an ambiguous task. This is due to a) the simplistic modeling characteristics in the life cycle inventory step (LCI) of LCA in view of the complexity of our techno-economic system, and b) to the nontangible theoretical nature of the product system as a representation of the processes ‘causally’ linked to a product. Ambiguous methodological decisions during the setup of an LCI include the modeling of end-of-life scenarios or the choice of an allocation factor for the allocation of joint co-production processes. An important criterion for methodological decisions — besides the conformity with the relevant series of standards ISO 14 040 — is if the improvement options, which can be deduced from the LCI, are perceived by the decision-maker as to redirect the material flows at stake into more sustainable paths.

Methods

From this functionalistic conception of LCA, this article develops a set of wood-specific requirements, an LCI of wood products has to fulfill to give adequate decision support under Central European conditions. These requirements serve as a basis for the evaluation of different allocation procedures in a case study related to the modeling of end-of-life scenarios in a product LCA of wood products. The case study discusses how the recycling and incineration of a creosote-treated railway sleeper (Am. tie) are modeled according to various methodological propositions for the solution of the allocation problems related to recycling and final disposal. A partial life cycle model of the railway sleeper demonstrates the effect of the different allocation procedures to the over-all result.

Results and Discussion

The most important conclusion — apart from proposing a functionalistic approach to solve allocation problems — is that under Central European conditions both the material and energy aspects of wood and the related substitution and opportunity effects (opportunity ‘cost’) should be considered for the modeling of post-consumer waste wood in attributive product LCA, even when comparing products made of different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Brujin H, van Duin R, Huijbregts MAJ, Lindeijer EW, Roorda AAH, van der Ven BL, Weidema PB (2002): Life cycle assessment — An operational guide to the ISO standards. Eco-efficiency in industry and science, volume 7. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  2. Hofstetter T, Baumgartner T, Scholz RW (2000): Modelling the valuesphere and the ecosphere: integrating the decision maker’s perspectives into LCA. Int J LCA 5(3) 161–175

    Google Scholar 

  3. Hofstetter P (1998): Perspectives in life cycle impact assessment: A structured approach to combine models of the technosphere, ecosphere and valuesphere. Kluwer Academic Publishers, Boston

    Google Scholar 

  4. Klöpffer W (1998): Subjective is not arbitrary. Int J LCA 3(2) 61–61

    Google Scholar 

  5. Werner F (2005): Ambiguities in decision-oriented life cycle inventories; the role of mental models and values. Eco-Efficiency in Industry and Science series, vol. 17. Springer, Dordrecht, pp 330–338

    Google Scholar 

  6. Werner F, Scholz RW (2002): Ambiguities in decision-oriented life cycle inventories; the role of mental models. Int J LCA 7(6) 330–338

    Google Scholar 

  7. Johnson-Laird PN (1983): Mental models. Cambridge University Press, Cambridge, UK

    Google Scholar 

  8. Lindfors L-G, Christiansen K, Hoffman L, Virtanen Y, Juntilla V, Hanssen OJ, Rønning A, Ekvall T, Finnveden G (1995): LCA-Nordic technical reports No 1–9. TemaNord 1995:502. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  9. Werner F, Richter K (2000): Economic allocation in LCA: A case study about aluminium window frames. Int J LCA 5(2) 79–83

    Google Scholar 

  10. de Feyter S (1995): Handling of the carbon balance of forests in LCA. In: Frühwald F, Solberg B (eds), Life-cycle analysis — A challenge for forestry and forest industry. EFI Proceedings No 8, European Forest Institute, Hamburg, pp 33–39

    Google Scholar 

  11. Jungmeier G, Werner F, Jarnehammer A, Hohenthal C, Richter K (2002): Allocation in LCA of wood-based products; experiences of Cost Action E9; part I. methodology. Int J LCA 7(5) 290–294

    Google Scholar 

  12. Jungmeier G, Werner F, Jarnehammer A, Hohenthal C, Richter K (2002): Allocation in LCA of wood-based products — Experiences of Cost Action E9. Part II: Examples. Int J LCA 7(6) 369–375

    CAS  Google Scholar 

  13. Fava JA, Senner J, Kirkpatrick N (1996): Life cycle inventory analysis — user’s guide; enhanced methods and applications for the products of the forest industry; the international working group. American Forest & Paper Association, Washington, DC

    Google Scholar 

  14. Finnveden G, Johannson J, Lind P, Moberg Å (2005): Life cycle assessment of energy from solid waste. Part 1: General methodology and results. J Cleaner Prod 13(3) 213–229

    Article  Google Scholar 

  15. Moberg Å, Finnveden G, Johannson J, Lind P (2005): Life cycle assessment of energy from solid waste. Part 2: Landfilling compared to other treatment methods. J Cleaner Prod 13(3) 231–240

    Article  Google Scholar 

  16. Karlsson R (1995): Recycling in life cycle assessments. Technical environmental planning, report 1995:6. Chalmers University of Technology, Gothenburg

    Google Scholar 

  17. Lindeijer EW (1994): Allocating recycling for integrated chain management: Taking account of quality losses. In: Huppes G, Schneider F (eds), Proceedings of the European workshop allocation in LCA. Centrum voor Milieukunde (CML), Leiden, Society of Environmental Toxicology and Chemistry (SETAC), Brussels, pp 29–35

    Google Scholar 

  18. Lindfors L-G, Christiansen K, Hoffman L, Virtanen Y, Juntilla V, Hanssen OJ, Rønning A, Ekvall T, Finnveden G (1995): Nordic guidelines on life-cycle assessment. Nord 1995:502, ed. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  19. Lindeijer EW, Huppes G (2001): Partitioning economic inand outputs to product systems. In: Guinée JB, Gorrée M, Heijungs R et al. (eds), Life cycle assessment: An operational guide to the ISO standards. Final report, May 2001, Ministry of Housing, Spatial Planning and Environment (VROM) and Centrum voor Milieukunde (CML), Rijksuniversiteit, Leiden, 〈http://www.leidenuniv.nl/interfac/cml/lca2/index.html

    Google Scholar 

  20. Boguski TK, Hunt RG Franklin WE (1994): General mathematical models for LCI recycling. Resources, Conservation and Recycling 12 (1994) 147–163

    Article  Google Scholar 

  21. Ekvall T (1994): Principles for allocation at multi-output processes and cascade recycling. In: Huppes G, Schneider F (eds), Proceedings of the European workshop allocation in LCA. Centrum voor Milieukunde (CML), Leiden, Society of Environmental Toxicology and Chemistry (SETAC), Brussels, pp 91–101

    Google Scholar 

  22. Ekvall T, Tillman AM (1997): Open-loop recycling: Criteria for allocation procedures. Int J LCA 2(3) 155–162

    Google Scholar 

  23. Fava JA, Denison R (eds) (1991): Workshop report: Life cycle assessment, inventory, classification, valuation, data bases. Society of Environmental Toxicology and Chemistry (SETAC), Brussels

    Google Scholar 

  24. Fava JA, Denison R, Jones B, Curran MY, Vigon BW, Selke S, Barnum J (1991): A technical framework for life cycle assessment. SETAC and SETAC Foundation for Environmental Education, Washington, DC

    Google Scholar 

  25. Klöpffer W (1996): Allocation rule for open-loop recycling in life cycle assessment. Int J LCA 1(1) 27–31

    Google Scholar 

  26. Weidema BP (1999): Some important aspects of market-based system delimitation in LCA — With a special view to avoiding allocation. In: Report of a Danish-Dutch workshop on LCA methodologies, September 1999. CML, Leiden, pp 33–46

    Google Scholar 

  27. Ekvall T (2000): A market-based approach to allocation at open-loop recycling. Resources, Conservation and Recycling 29(1–2) 91–109

    Article  Google Scholar 

  28. Azapagic A, Clift R (1994): Allocation of environmental burdens by whole-system modelling: The use of linear programming. In: Huppes G, Schneider F (eds), Proceedings of the European workshop allocation in LCA. Centrum voor Milieukunde (CML), Leiden, Society of Environmental Toxicology and Chemistry (SETAC), Brussels, pp 54–60

    Google Scholar 

  29. Ekvall T (1999): System expansion and allocation in life cycle assessment with implications for wastepaper management. Vol. AFR Report 245. Department of Technical Environmental Planning, Chalmers University of Technology, Göteborg

    Google Scholar 

  30. Ekvall T (1999): Key methodological issues for life cycle inventory analysis of paper recycling. J Cleaner Prod 7(4) 281–294

    Article  Google Scholar 

  31. Tillman AM, Ekvall T, Baumann H, Rydberg T (1994): Choice of system boundaries in life cycle assessment. J Cleaner Prod 2(1) 21–29

    Article  Google Scholar 

  32. Finnveden G, Ekvall T (1998): Life-cycle assessment as a decision-support tool — The case of recycling versus incineration of paper. Resources, Conservation and Recycling 24, 235–256

    Article  Google Scholar 

  33. Plätzer E, Hamm U, Göttsching L (1996): Ökobilanzen: Lassen sich Umweltbelastungen gerecht auf die Papierkette verteilen? Papier 50(10A) V63–V70

    Google Scholar 

  34. Werner F (2002): Modelling of wooden products in life cycle assessment with special emphasis on recycling and end-of-life: Model requirements, allocation procedures and recommendations derived from LCAs of railway sleepers and particleboard. Research and Work Report 115/48. Duebendorf, Eidgenössische Materialprüfungs-und Forschungsanstalt (EMPA)

    Google Scholar 

  35. Seppäla J, Melanen M, Jouttijärvi T, Kauppi L, Leikola N (1998): Forest industry and the environment; a life cycle assessment study from Finland. Resources, Conservation and Recycling. 23(1–2) 87–105

    Article  Google Scholar 

  36. Scholz RW, Weidenhaupt A (1998): Fazit Ökobilanzen: Ökobilanzen auf dem Weg in die Praxis. Bulletin ETH Zürich 268, 28–41

    Google Scholar 

  37. von Winterfeldt V, Edwards W (1986): Decision analysis and behavioral research. Cambridge University Press, New York

    Google Scholar 

  38. Keeney RL, Raiffa H (1976): Decision with multiple objectives; preferences and value tradeoffs. John Wiley & Sons, New York, Santa Barbara, London, Sydney, Toronto

    Google Scholar 

  39. Portisch HH, ASM International Materials Life-Cycle Analysis Committee (1997): Life-cycle engineering and design. In: Dieter GE, Lampman SR, Davidson GM, Sanders BR (eds), Materials selection and design. ASM International, Materials Park, OH, pp 93–100

    Google Scholar 

  40. Schaltegger S (1996): Eco-efficiency of LCA: The necessity of a site-specific approach. In: Schaltegger S (eds), Life cycle assessment (LCA) — quo vadis?, Birkhäuser Verlag, Basel, Boston, Berlin, pp 131–149

    Google Scholar 

  41. Wenzel H (1998): Application dependency of LCA methodology: Key variables and their model of influencing the method. Int J LCA 3(5) 281–288

    Article  Google Scholar 

  42. Werner F, Althaus HJ, Richter K (2002): Post-consumer wood in environmental decision-support tools. Schweizerische Zeitschrift für Forstwesen 153(3) 97–106

    Article  Google Scholar 

  43. Bowyer J (1995): Wood and other raw materials for the 21st century. Forest Prod J 45(2) 17–24

    Google Scholar 

  44. Buehlmann U (2001): Entwicklung von Holzeinschlag und Holzverbrauch. Holz-Zbl 127(11) 1373–1374

    Google Scholar 

  45. Eldag H (1980): Wood and wood products. In: Altenpohl DG (eds), Materials in world perspective: Assessment of resources, technologies and trends for key materials industries. Springer-Verlag, Berlin, Heidelberg, New York, pp 105–117

    Google Scholar 

  46. Fraanje PJ (1997): Cascading of pine wood. Resources, Conservation and Recycling 19(1) 21–28

    Article  Google Scholar 

  47. Gielen D (1995): Wood for energy or materials applications — Integrated energy and materials system optimisation for CO2 reduction. In: Frühwald A, Solberg B (eds), Life-cycle analysis — A challenge for forestry and forest industry. EFI Proceedings No 8, European Forest Institute, Hamburg, pp 149–168

    Google Scholar 

  48. Lafleur MCC, Fraanje PJ (1997): Towards sustainable use of the renewable resource wood in the Netherlands — A systematic approach. Resources, Conservation and Recycling 20(1) 19–29

    Article  Google Scholar 

  49. Mauch S, von Stokar T, Zürcher D, Heldstab J, Schreyer C, Seiler B, Scheidegger A, Zanola V, Tschirren J (1995): Quantitative Aspekte einer zukunftsfähigen Schweiz. Arbeitsbericht, INFRAS, Zurich

    Google Scholar 

  50. Messner F (1999): Nachhaltiges Wirtschaften mit nichterneuerbaren Ressourcen. Verlag PeterLang, Frankfurt a.M., Berlin, Bern, Brussels, New York, Vienna

    Google Scholar 

  51. Schulz H (1972): Holz im Kreislauf der Wirtschaftsgüter. Holz-Zbl 98(101) 1415–1417

    Google Scholar 

  52. Sutton WRJ (1993): The world’s need for wood. In: The globalization of wood: Supply, processes, products, and markets. Forest Products Society, Madison/Wisconsin, pp 21–28

    Google Scholar 

  53. Nussbaumer T (1994): Anforderungen bei der thermischen Verwertung von Holzreststoffen und-abfällen. In: E. Westkemper (ed), Marktorientiert, Schlank und Umweltgerecht: Recycling und ökologische Aspekte. 9. Holztechnisches Kolloquium, Vulkan-Verlag, Braunschweig, pp 9.1–9.20

    Google Scholar 

  54. Sirkin T, ten Houten M (1994): The cascade chain: A theory and tool for achieving resource sustainability with applications for product design. Resources, Conservation and Recycling 10(3) 213–277

    Article  Google Scholar 

  55. Hofer P (2000): Ansätze zu einer schweizerischen Altholzpolitik: Vom Überfluss zum Mangel und zurück. SAH bulletin CSRB: Altholz zwischen Verwertung und Beseitigung, 57 2000, pp 16–23

    Google Scholar 

  56. Frühwald A (1997): Ecological aspects of wood-based panels. Holzforschung und Holzverwertung 49(6) 95–99

    Google Scholar 

  57. Marutzky R (1997): Entsorgung von Rest-und Gebrauchtholz: Eine Bestandesaufnahme der aktuellen Situation in Deutschland. Holz-Zbl 123(146) 2201–2204

    Google Scholar 

  58. Roeffael E (1997): Stand der Kenntnisse beim Recycling von Holzwerkstoffen. In: Kharazipour A, Roeffael E (eds), Recyclingkonzepte in der Holzwerkstoffindustrie. Institut für Holzbiologie und Holztechnologie, Göttingen, pp 4–14

    Google Scholar 

  59. Sikkema R, Nabuurs G-J (1995): Forest and forest products: The challenge for a better carbon balance. In: Frühwald A, Solberg B (eds), Life-cycle analysis — A challenge for forestry and forest industry, EFI Proceedings No 8, European Forest Institute, Hamburg, pp 169–175

    Google Scholar 

  60. Taylor J, van Langenberg K (2003): Review of the environmental impact of wood compared with alternative products used in the production of furniture. CSIRO Forestry and Forest Products Research and Development Corporation, Victoria

    Google Scholar 

  61. Werner F, Taverna R, Hofer P, Richter K (2005): Greenhouse gas dynamics of an increased use of wood in buildings in Switzerland. Climatic Change 71(1–3) 319–347

    Google Scholar 

  62. Matthews RW, Nabuurs G-J, Alexeyev V, Birdsey RA, Fischlin A, MacLaren JP, Marland G, Price D (1996): WG3 summary: Evaluation of the role of forest management and forest products in the carbon cycle. In: Apps MJ, Price DT (eds), Forest ecosystems, forest management and the global carbon cycle. Springer-Verlag, Berlin, Heidelberg, pp 293–301

    Google Scholar 

  63. Skog KE, Nicholson GA (1998): Carbon cycling through wood products: the role of wood and paper products in carbon sequestration. Forest Prod J 48(7/8) 75–83

    CAS  Google Scholar 

  64. Künniger T, Richter K (1998): Ökologischer Vergleich von Eisenba hnschwellen in der Schweiz; Streckenschwellen aus vorgespanntem Beton, Profilstahl und teerölimprägniertem Buchenholz. Forschungs-und Arbeitsbericht 115/38, Eidgenössische Materialprüfungs-und Forschungsanstalt (EMPA), Dübendorf

    Google Scholar 

  65. Graf HP (2001): Personal communication. SBB AG, Abfallbewirtschaftung, Schaffhausen

    Google Scholar 

  66. Werner F, Richter K (2000): Economic allocation and valuecorrected substitution. Reply to the ‘Letter to the Editor’ by Gjalt Huppes. Int J LCA 5(4) 189–190

    Google Scholar 

  67. Azapagic A, Clift R (1999): Allocation of environmental burdens in co-product systems: Product-related burdens. Part 1. Int J LCA 4(6) 357–369

    CAS  Google Scholar 

  68. Guinée JB, Heijungs R, Huppes G (2004): Economic allocation: Examples and derived decision tree. Int J LCA 9(1) 23–33

    Article  Google Scholar 

  69. Heijungs R, Guinée JB, Huppes G, Lankreijer RM, Udo de Haes H, Sleeswijk AW (1992): Environmental life cycle assessment of products, guide and background. Centre for Milieukunde (CML), Leiden

    Google Scholar 

  70. Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenburg A, Maskell K (eds) (1996): Climate change 1995: The science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  71. Werner F (2002): Treatment of recycling of a luminium in LCA; development and evaluation of the value-corrected substitution procedure a pplied on window frames. Research and Work Report 115/47. Eidgenössische Materialprüfungs-und Forschungsanstalt (EMPA), Duebendorf

    Google Scholar 

  72. Susskind L, McKearnnan S, Thomas-Larner J (eds) (1999): The consensus building handbook—A comprehensive guide to reaching agreement. Sage Publications, Thousand Oaks, CA

    Google Scholar 

  73. Brunswick E (1950): The conceptual framework of psychology. University of Chicago Press, Chicago

    Google Scholar 

  74. Keeney RL (1992): Value-focused thinking; a path to creative decision making. Harvard University Press, Cambridge (MA), London

    Google Scholar 

  75. Scholz RW, Tietje O (2001): Embedded case study methods; integrating quantitative and qualitative methods. Sage Publications, Thousand Oaks, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Werner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, F., Althaus, HJ., Richter, K. et al. Post-consumer waste wood in attributive product LCA. Int J Life Cycle Assess 12, 160–172 (2007). https://doi.org/10.1065/lca2006.05.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/lca2006.05.249

Keywords

Navigation