A distribution of the antiferromagnetic vector in a uniaxial two-sublattice antiferromagnet is investigated. A new class of nonlinear solutions of the system of two well-known Landau–Lifshitz equations in the form of socalled nonlinear sigma-model is obtained and a new type of topological magnetic configuration in the investigated antiferromagnet is described. Examples of solutions of the found class are presented. These examples include vortex-like structures, both moving and static. It is assumed that such vortices have an oscillating nature, so that the angle between the antiferromagnetic vector and the magnetic symmetry axis oscillates with descending amplitude and tends to π/2 when the distance to the vortex axis increases.

1.
T.
Kampfrath
,
A.
Sell
,
G.
Klatt
,
A.
Pashkin
,
S.
Mährlein
,
T.
Dekorsy
,
M.
Wolf
,
M.
Fiebig
,
A.
Leitenstorfer
, and
R.
Huber
,
Nat. Photonics
5
,
31
(
2011
).
2.
Y.
Mukai
,
H.
Hirori
,
T.
Yamamoto
,
H.
Kageyama
, and
K.
Tanaka
,
Ultrafast Phenomena XIX
(Springer International Publishing), 649 (
2015
).
3.
O. R.
Sulymenko
,
O. V.
Prokopenko
,
V. S.
Tiberkevich
,
A. N.
Slavin
,
B. A.
Ivanov
, and
R. S.
Khymyn
,
Phys. Rev. Appl.
8
,
064007
(
2017
).
4.
R.
Khymyn
,
I.
Lisenkov
,
V.
Tiberkevich
,
B. A.
Ivanov
, and
A.
Slavin
,
Sci. Rep.
7
,
1
(
2017
).
5.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
,
Rev. Mod. Phys.
90
,
015005
(
2018
).
6.
A. A.
Serga
,
A. V.
Chumak
, and
B.
Hillebrands
,
J. Phys. D Appl. Phys.
43
,
264002
(
2010
).
7.
T.
Sebastian
,
K.
Schultheiss
,
B.
Obry
,
B.
Hillebrands
, and
H.
Schultheiss
,
Front Phys.
3
,
35
(
2015
).
8.
L.
Šmejkal
,
Y.
Mokrousov
,
B.
Yan
, and
A. H.
MacDonald
,
Nat. Phys.
14
,
242
(
2018
).
9.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
,
Nat. Nanotechnol.
11
,
231
(
2016
).
10.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
,
Rev. Mod. Phys.
90
,
015005
(
2018
).
11.
R. J. C.
Lopes
,
R. C.
Silva
,
R. L.
Silva
,
W. A.
Moura-Melo
, and
A. R.
Pereira
,
Phys. Lett. A
384
,
126376
(
2020
).
12.
J.
Wu
,
D.
Carlton
,
J. S.
Park
,
Y.
Meng
,
E.
Arenholz
,
A.
Doran
,
A. T.
Young
,
A.
Scholl
,
C.
Hwang
,
H. W.
Zhao
,
J.
Bokor
, and
Z. Q.
Qiu
,
Nat. Phys.
7
,
303
(
2011
).
13.
F. P.
Chmiel
,
N. W.
Price
,
R. D.
Johnson
,
A. D.
Lamirand
,
J.
Schad
,
G.
van der Laan
,
D. T.
Harris
,
J.
Irwin
,
M. S.
Rzchowski
,
C.-B.
Eom
, and
P. G.
Radaelli
,
Nat. Mater.
17
,
581
(
2018
).
14.
S.
Dasgupta
,
S. K.
Kim
, and
O.
Tchernyshyov
,
Phys. Rev. B
95
,
220407(R)
(
2017
).
15.
E. G.
Galkina
,
A. Y.
Galkin
,
B. A.
Ivanov
, and
F.
Nori
,
Phys. Rev. B
81
,
184413
(
2010
).
16.
L.
Caretta
,
E.
Rosenberg
,
F.
Büttner
,
T.
Fakhrul
,
P.
Gargiani
,
M.
Valvidares
,
Z.
Chen
,
P.
Reddy
,
D. A.
Muller
,
C. A.
Ross
, and
G. S.
Beach
,
Nat. Commun.
11
,
1
(
2020
).
17.
O. Y.
Gorobets
and
Y. I.
Gorobets
,
J. Magn. Magn. Mater.
507
,
166800
(
2020
).
18.
A. M.
Kosevich
,
B. A.
Ivanov
, and
A. S.
Kovalev
,
Phys. Rep.
194
,
117
(
1990
).
19.
V. G.
Bar’yakhtar
,
B. A.
Ivanov
, and
M. V.
Chetkin
,
Sov. Phys. Usp.
28
,
563
(
1985
).
20.
E. G.
Galkina
and
B. A.
Ivanov
,
Fiz. Nizk. Temp.
44
,
794
(
2018
) [
Low Temp. Phys.
44, 618 (2018)].
21.
O. Y.
Gorobets
,
Chaos Soliton. Fract.
36
,
671
(
2008
).
22.
Y. I.
Gorobets
,
O. Y.
Gorobets
, and
V. V.
Kulish
,
Commun. Nonlinear Sci.
42
,
52
(
2017
).
23.
M. V.
Chetkin
,
Y. N.
Kurbatova
,
T. B.
Shapaeva
, and
O. A.
Borschegovsky
,
Phys. Lett. A
337
,
235
(
2005
).
24.
M. V.
Chetkin
,
Y. N.
Kurbatova
,
T. B.
Shapaeva
, and
O. A.
Borschegovsky
,
JETP Lett.
85
,
194
(
2007
).
25.
M. V.
Chetkin
,
Y. N.
Kurbatova
, and
T. B.
Shapaeva
,
J. Magn. Magn. Mater.
321
,
800
(
2009
).
26.
V. I.
Marchenko
,
JETP
80
,
2010
(
1981
).
27.
O.
Busel
,
O.
Gorobets
, and
Y.
Gorobets
,
J. Magn. Magn. Mater.
462
,
226
(
2018
).
28.
V. V.
Kruglyak
,
O. Y.
Gorobets
,
Y. I.
Gorobets
, and
A. N.
Kuchko
,
J. Phys. Condens. Matter
26
,
406001
(
2014
).
You do not currently have access to this content.