To fulfill the increasing need for large power generation by wind turbines, the concept of multirotor wind turbines has recently received attention as a promising alternative to conventional massive single-rotor wind turbines. To shed light on the viability of this concept, large-eddy simulation is employed in this study to compare wake flow properties of a multirotor wind turbine with those of a single-rotor turbine. The wake of a multirotor turbine is found to recover faster at short downwind distances, where the whole wake is characterized as an array of localized high velocity-deficit regions associated with each rotor. However, as the wake moves downstream, rotor wakes start interacting with each other until they eventually form a single wake. This transition from a wake array to a single wake adversely affects the initial fast recovery of multirotor turbine wakes. A budget analysis of mean kinetic energy is performed to analyze the energy transport into the wake before and after this transition. In addition, the effect of different geometrical configurations on wake characteristics of a multirotor turbine was examined. We found that the recovery rate of multirotor turbine wakes is enhanced by the increase in rotor spacing, whereas the number and rotation direction of rotors do not play a significant role in the wake recovery. A simple analytical relationship is also developed to predict the streamwise distance at which the transition from a wake array to a single wake occurs for multirotor wind turbines.

1.
P.
Chasapogiannis
,
J. M.
Prospathopoulos
,
S. G.
Voutsinas
, and
T. K.
Chaviaropoulos
, “
Analysis of the aerodynamic performance of the multi-rotor concept
,”
J. Phys.: Conf. Ser.
524
(
1
),
012084
(
2014
).
2.
P.
Jamieson
,
T.
Chaviaropoulos
,
S.
Voutsinas
,
M.
Branney
,
G.
Sieros
, and
P.
Chasapogiannis
, “
The structural design and preliminary aerodynamic evaluation of a multi-rotor system as a solution for offshore systems of 20 MW or more unit capacity
,” in
EWEC and Exhibition Barcelona
(
EWEA
,
2014
), Vol. 1, PO.ID 203.
3.
P.
Jamieson
and
M.
Branney
, “
Multi-rotors; a solution to 20 MW and beyond?
,”
Energy Procedia
24
,
52
59
(
2012
).
4.
P.
Jamieson
and
M.
Branney
, “
Structural considerations of a 20 MW multi-rotor wind energy system
,”
J. Phys.: Conf. Ser.
555
(
1
),
012013
(
2014
).
5.
P.
Verma
, “
Multi rotor wind turbine design and cost scaling
,” M.Sc. thesis,
University of Massachusetts Amherst
,
2014
.
6.
S. N. S.
Sandhu
, “
Comparative analysis of conventional and multi-rotor wind turbines
,”
Int. J. Circuits, Syst. Signal Process.
12
,
246
255
(
2018
).
7.
N. S.
Sandhu
and
S.
Chanana
, “
Performance and economic analysis of multi-rotor wind turbine
,”
EMITTER Int. J. Eng. Technol.
6
(
2
),
289
316
(
2018
).
8.
Y.
Zhou
,
R.
So
,
M.
Liu
, and
H.
Zhang
, “
Complex turbulent wakes generated by two and three side-by-side cylinders
,”
Int. J. Heat Fluid Flow
21
(
2
),
125
133
(
2000
).
9.
M. M.
Alam
,
Y.
Zhou
, and
X.
Wang
, “
The wake of two side-by-side square cylinders
,”
J. Fluid Mech.
669
,
432
471
(
2011
).
10.
A.
Rosenberg
,
S.
Selvaraj
, and
A.
Sharma
, “
A novel dual-rotor turbine for increased wind energy capture
,”
J. Phys.: Conf. Ser.
524
(
1
),
012078
(
2014
).
11.
Z.
Wang
,
W.
Tian
,
A.
Ozbay
,
A.
Sharma
, and
H.
Hu
, “
An experimental study on the aeromechanics and wake characteristics of a novel twin-rotor wind turbine in a turbulent boundary layer flow
,”
Exp. Fluids
57
(
9
),
150
(
2016
).
12.
N. S.
Ghaisas
,
A. S.
Ghate
, and
S. K.
Lele
, “
Large-eddy simulation study of multi-rotor wind turbines
,”
J. Phys.: Conf. Ser.
1037
(
7
),
072021
(
2018
).
13.
M. P.
van der Laan
,
S. J.
Andersen
,
N.
Ramos García
,
N.
Angelou
,
G. R.
Pirrung
,
S.
Ott
,
M.
Sjöholm
,
K. H.
Sørensen
,
J. X.
Vianna Neto
,
M.
Kelly
,
T. K.
Mikkelsen
, and
G. C.
Larsen
, “
Power curve and wake analyses of the Vestas multi-rotor demonstrator
,”
Wind Energy Sci.
4
,
251
271
(
2019
).
14.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
(
2
),
025105
(
2005
).
15.
R.
Stoll
and
F.
Porté-Agel
, “
Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain
,”
Water Resour. Res.
42
(
1
),
W01409
, https://doi.org/10.1029/2005wr003989 (
2006
).
16.
F.
Porté-Agel
,
Y. T.
Wu
,
H.
Lu
, and
R. J.
Conzemius
, “
Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
,”
J. Wind Eng. Ind. Aerodyn.
99
(
4
),
154
168
(
2011
).
17.
M.
Abkar
and
F.
Porté-Agel
, “
The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms
,”
Energies
6
,
2338
2361
(
2013
).
18.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind turbine wakes: A large-eddy simulation study
,”
Phys. Fluids
27
(
3
),
035104
(
2015
).
19.
M.
Abkar
,
J.
Sørensen
, and
F.
Porté-Agel
, “
An analytical model for the effect of vertical wind veer on wind turbine wakes
,”
Energies
11
(
7
),
1838
(
2018
).
20.
X. I.
Yang
and
M.
Abkar
, “
A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers
,”
J. Fluid Mech.
842
,
354
380
(
2018
).
21.
M.
Abkar
,
A.
Sharifi
, and
F.
Porté-Agel
, “
Wake flow in a wind farm during a diurnal cycle
,”
J. Turbul.
17
(
4
),
420
441
(
2016
).
22.
M.
Abkar
, “
Impact of subgrid-scale modeling in actuator-line based large-eddy simulation of vertical-axis wind turbine wakes
,”
Atmosphere
9
(
7
),
257
(
2018
).
23.
A. E.
Y
lmaz
ı and
J.
Meyers
, “
Optimal dynamic induction control of a pair of inline wind turbines
,”
Phys. Fluids
30
(
8
),
085106
(
2018
).
24.
Y. T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
(
3
),
345
366
(
2011
).
25.
F.
Porté-Agel
,
Y. T.
Wu
, and
C. H.
Chen
, “
A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm
,”
Energies
6
(
10
),
5297
5313
(
2013
).
26.
Y. T.
Wu
and
F.
Porté-Agel
, “
Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm
,”
Renewable Energy
75
,
945
955
(
2015
).
27.
C.
Garrett
and
P.
Cummins
, “
The efficiency of a turbine in a tidal channel
,”
J. Fluid Mech.
588
,
243
251
(
2007
).
28.
G. T.
Houlsby
,
S.
Draper
, and
M. L. G.
Oldfield
, “
Application of linear momentum actuator disc theory to open channel flow
,” Report No. OUEL 2296/08,
2008
.
29.
T.
Nishino
and
R. H. J.
Willden
, “
The efficiency of an array of tidal turbines partially blocking a wide channel
,”
J. Fluid Mech.
708
,
596
606
(
2012
).
30.
T.
Nishino
and
S.
Draper
, “
Local blockage effect for wind turbines
,”
J. Phys.: Conf. Ser.
625
(
1
),
012010
(
2015
).
31.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
32.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
(
1
),
013106
(
2010
).
33.
J.
Meyers
and
C.
Meneveau
, “
Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms
,”
J. Fluid Mech.
715
,
335
358
(
2013
).
34.
M.
Abkar
and
F.
Porté-Agel
, “
Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition
,”
Renewable Energy
70
,
142
152
(
2014
).
35.
D.
Allaerts
and
J.
Meyers
, “
Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer
,”
Phys. Fluids
27
(
6
),
065108
(
2015
).
36.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of the Coriolis force on the structure and evolution of wind turbine wakes
,”
Phys. Rev. Fluids
1
,
063701
(
2016
).
37.
G.
Cortina
,
M.
Calaf
, and
R. B.
Cal
, “
Distribution of mean kinetic energy around an isolated wind turbine and a characteristic wind turbine of a very large wind farm
,”
Phys. Rev. Fluids
1
(
7
),
074402
(
2016
).
38.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms
,”
J. Turbul.
20
(
1
),
32
63
(
2019
).
39.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
40.
A.
Rosen
and
Y.
Sheinman
, “
The power fluctuations of a wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
59
,
51
68
(
1996
).
41.
L.
Chamorro
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
129
149
(
2009
).
42.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new miniature wind turbine for wind tunnel experiments. Part I: Design and performance
,”
Energies
10
(
7
),
908
(
2017
).
43.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new miniature wind turbine for wind tunnel experiments. Part II: Wake structure and flow dynamics
,”
Energies
10
(
7
),
923
(
2017
).
44.
R. J.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Effects of turbine spacing on the power output of extended wind-farms
,”
Wind Energy
19
(
2
),
359
370
(
2016
).
45.
N.
Ali
,
N.
Hamilton
,
D.
DeLucia
, and
R.
Bayoán Cal
, “
Assessing spacing impact on coherent features in a wind turbine array boundary layer
,”
Wind Energy Sci.
3
,
43
56
(
2018
).
46.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
47.
A.
Niayifar
and
F.
Porté-Agel
, “
Analytical modeling of wind farms: A new approach for power prediction
,”
Energies
9
(
9
),
741
(
2016
).
48.
M. P.
van der Laan
and
M.
Abkar
, “
Improved energy production of multi-rotor wind farms
,”
J. Phys.: Conf. Ser.
1256
,
012011
(
2019
).
49.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
50.
L. J.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
51.
M.
Bastankhah
and
F.
Porté-Agel
, “
Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region
,”
Phys. Fluids
29
(
6
),
065105
(
2017
).
52.
C.
VerHulst
and
C.
Meneveau
, “
Altering kinetic energy entrainment in large eddy simulations of large wind farms using unconventional wind turbine actuator forcing
,”
Energies
8
(
1
),
370
386
(
2015
).
53.
C.
Meneveau
, “
Big wind power: Seven questions for turbulence research
,”
J. Turbul.
20
(
1
),
2
20
(
2019
).
You do not currently have access to this content.