Magnetite nanoparticles about 10 nm sized were synthesized by the polyol method. Zero-field-cooled (ZFC)-FC measurements showed a blocking temperature ∼170 K and the absence of the Verwey transition. They were subsequently consolidated by spark plasma sintering at 750 °C for 15 min, leading to a high density (92% of the theoretical density), solid body, with grains in the 150 nm range. X-ray diffraction patterns exhibited a spinel single phase with cell parameters corresponding to the magnetite structure. Magnetic measurements showed a decrease of coercivity from 685 Oe (54.5 kA/m) at 118 K to 90 Oe (7.2 kA/m) at 139 K. ZFC measurements at 25 Oe presented a three-fold magnetization increase as temperature increased; a small transition between 116 and 117.5 K, followed by a larger one from 117.6 to 124 K. The first transition can be associated with a complex crystallographic transition and delocalization of Fe2+-Fe3+, while the second one can be attributed to spin reorientation due to the magnetocrystalline anisotropy constant (K1) change of sign as previously observed only in magnetite single crystals.

1.
R.
Valenzuela
,
Magnetic Ceramics
(
Cambridge University Press
,
2005
).
2.
E. J. W.
Verwey
,
Nature
144
,
327
(
1939
).
3.
M.
Iizumi
,
K. F.
Koetzle
,
G.
Shirane
,
S.
Chikazumi
,
M.
Matsui
, and
S.
Todo
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
38
,
2121
(
1982
).
4.
S. R.
Bland
,
B.
Detlefs
,
S. B.
Wilkins
,
T. A. W.
Beale
,
C.
Mazzoli
,
Y.
Joly
,
P. D.
Hatton
, and
V. A. M.
Brabers
,
J. Phys. Condens. Matter
21
,
485601
(
2009
).
5.
J.
Blasco
,
J.
Garcia
, and
G.
Subias
,
Phys. Rev. B
83
,
104105
(
2011
).
6.
M. S.
Senn
,
J. P.
Wright
, and
J. P.
Attfield
,
Nature
481
,
173
(
2012
).
7.
L.
Harivardhan Reddy
,
J. L.
Aria
,
J.
Nicolas
, and
P.
Couvreur
,
Chem. Rev.
112
,
5818
(
2012
).
8.
H. M.
Joshi
,
J. Nanopart. Res.
15
,
1235
(
2013
).
9.
S. C. N.
Tang
and
I. M. C.
Lo
,
Water Res.
47
,
2613
(
2013
).
10.
Y. M.
Hao
,
C.
Man
, and
Z. B.
Hu
,
J. Hazard. Mater.
184
,
392
(
2010
).
11.
K. L.
López Maldonado
,
P.
de La Presa
,
E.
Flores-Tavizón
,
J. R.
Farías Mancilla
,
J. A.
Matutes Aquino
,
A.
Hernando Grande
, and
J. T.
Elizalde Galindo
,
J. Appl. Phys.
113
,
17E132
(
2013
).
12.
V. N.
Nikiforov
,
Y. A.
Koksharov
,
S. N.
Polyakov
,
A. P.
Malakho
,
A. V.
Volkov
,
M. A.
Moskvina
,
G. B.
Khomutov
, and
V. Y.
Irkhin
,
J. Alloys Compd.
569
,
58
(
2013
).
13.
H.
Basti
,
L.
Ben Tahar
,
L. S.
Smiri
,
F.
Herbst
,
M. J.
Vaulay
,
F.
Chau
,
S.
Ammar
, and
S.
Benderbous
,
J. Colloid Interface Sci.
341
(
2
),
248
(
2010
).
14.
R.
Orru
,
R.
Lichen
,
A. M.
Locci
, and
G.
Cao
,
Mater. Sci. Eng. R.
63
,
127
(
2009
).
15.
Z. A.
Munir
,
U.
Anselmi-Tamburini
, and
M.
Ohyanagi
,
J. Mater. Sci.
41
,
763
(
2006
).
16.
V.
Skumryev
,
H. J.
Blythe
,
J.
Cullen
, and
J. M. D.
Coey
,
J. Magn. Magn. Mater.
196–197
,
515
(
1999
).
17.
L. R.
Bickford
,
J. M.
Brownlow
, and
R. F.
Penoyer
,
Proc. Inst. Electr. Eng. B
104
,
238
(
1957
).
18.
M.
Balanda
,
A.
Wiechec
,
D.
Kim
,
Z.
Kakol
,
A.
Kozlowski
,
P.
Niedziela
,
J.
Sabol
,
Z.
Tarnawski
, and
J. M.
Honig
,
Eur. Phys. J. B
43
,
201
(
2005
).
19.
R.
Valenzuela
,
Z.
Beji
,
F.
Herbst
, and
S.
Ammar
,
J. Appl. Phys.
109
,
07A329
(
2011
).
You do not currently have access to this content.