The ultraviolet absorption spectra for polyimide and several polyimide model compounds have been measured and the spectroscopically parametrized CNDO/S3 model is used to provide a detailed quantitative description of the spectra. Analysis of the optical absorption spectrum yields a value of 30° for the phenylimide torsional angle in these systems. In addition, the ultraviolet absorptions are found to be intramolecular charge transfer transitions.

1.
See, for instance, Polyimides, edited by K. L. Mittal (Plenum, New York, 1984).
2.
J. J.
Pireaux
,
M.
Vermeersch
,
C.
Grégoire
,
P. A.
Thiry
,
R.
Caudano
, and
T. C.
Clarke
,
J. Chem. Phys.
88
,
3353
(
1988
).
3.
(a)
S. P.
Kowalczyk
,
Y.‐H.
Kim
,
G. F.
Walker
, and
J.
Kim
,
Appl. Phys. Lett.
52
,
375
(
1988
);
(b)
P. N.
Sanda
,
J. W.
Bartha
,
J. G.
Clabes
,
J. L.
Jordan
,
C.
Feger
,
B. D.
Silverman
, and
P. S.
Ho
,
J. Vac. Sci. Tech. A
4
,
1035
(
1986
);
(c)
R.
Haight
,
R. C.
White
,
B. D.
Silverman
, and
P. S.
Ho
,
J. Vac. Sci. Tech. A
6
,
2188
(
1988
).
4.
(a)
A. R.
Rossi
,
P. N.
Sanda
,
B. D.
Silverman
, and
P. S.
Ho
,
Organometallics
6
,
580
(
1987
);
(b)
J. G.
Clabes
,
M. J.
Goldberg
,
A.
Viehbeck
, and
C. A.
Kovac
,
J. Vac. Sci. Tech. A
6
,
985
(
1988
);
(c)
M. J.
Goldberg
,
J. G.
Clabes
, and
C. A.
Kovac
,
J. Vac. Sci. Tech. A
6
,
991
(
1988
).
5.
N. J.
DiNardo
,
J. E.
DeMuth
, and
T. C.
Clarke
,
J. Chem. Phys.
85
,
6739
(
1986
).
6.
(a)
H.
Ishida
,
S. T.
Wellinghoff
,
E.
Baer
, and
J. L.
Koenig
,
Macromolecules
13
,
826
(
1980
);
(b)
S. T.
Wellinghoff
,
H.
Ishida
,
J. L.
Koenig
, and
E.
Baer
,
Macromolecules
13
,
834
(
1980
).,
Macromolecules
7.
B. D.
Silverman
,
P. N.
Sanda
,
P. S.
Ho
, and
A. R.
Rossi
,
J. Polym. Sci. Polym. Chem. Ed.
23
,
2857
(
1985
).
8.
P. O.
Hahn
,
G. W.
Rubloff
, and
P. S.
Ho
,
J. Vac. Sci. Technol. A
2
,
756
(
1984
).
9.
J. L.
Bredas
and
T. C.
Clarke
,
J. Chem. Phys.
86
,
253
(
1987
).
10.
(a)
R.
Srinivasan
and
V.
Mayne‐Banton
,
Appl. Phys. Lett.
41
,
576
(
1982
);
(b)
J. H.
Brannon
,
J. R.
Lankard
,
A. I.
Baise
,
F.
Burns
, and
J.
Kaufman
,
J. Appl. Phys.
58
,
2036
(
1985
).
11.
(a)
N. O.
Lipari
and
C. B.
Duke
,
J. Chem. Phys.
63
,
1748
(
1975
);
(b)
C. B.
Duke
,
N. O.
Lipari
,
W. R.
Salaneck
, and
L. B.
Schein
,
J. Chem. Phys.
63
,
1758
(
1975
); ,
J. Chem. Phys.
(c)
N. O.
Lipari
and
C. B.
Duke
,
J. Chem. Phys.
63
,
1768
(
1975
).,
J. Chem. Phys.
12.
(a)
C. B.
Duke
,
Int. J. Quant. Chem. Quant. Chem. Symp.
13
,
267
(
1979
);
(b)
K. L.
Yip
,
C. B.
Duke
,
W. R.
Salaneck
,
E. W.
Plummer
, and
G.
Loubriel
,
Chem. Phys. Lett.
49
,
530
(
1977
).
13.
(a)
C. B.
Duke
,
A.
Paton
, and
W. R.
Salaneck
,
Mol. Cryst. Liq. Cryst.
83
,
177
(
1982
);
(b) C. B. Duke and A. Paton, Conductive Polymers (Plenum, New York, 1981), pp. 155–169; (c)
C. B.
Duke
,
E. M.
Conwell
, and
A.
Paton
,
Chem. Phys. Lett.
131
,
82
(
1986
).
14.
J.
Boon
and
E. P.
Magre
,
Makromol. Chem.
126
,
130
(
1969
).
15.
N.
Takahashi
,
D. Y.
Yoon
, and
W.
Parrish
,
Macromolecules
17
,
2583
(
1984
).
16.
(a)
C. B.
Duke
,
A.
Paton
, and
W. R.
Salaneck
,
Int. J. Quant. Chem.
21
,
153
(
1987
);
(b)
J. P.
LaFemina
,
C. B.
Duke
, and
A.
Paton
,
J. Chem. Phys.
87
,
2151
(
1987
);
(c)
J. P.
LaFemina
,
C. B.
Duke
, and
A.
Paton
,
J. Chem. Phys.
89
,
2668
(
1988
).
17.
D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry (McGraw‐Hill, London, 1973), pp. 22–28.
18.
C. B.
Duke
, in
Proc. SPIE
,
447
,
137
(
1983
).
19.
(a)
C. B.
Duke
,
W. R.
Salaneck
,
T. J.
Fabish
,
J. J.
Ritsko
,
H. R.
Thomas
, and
A.
Paton
,
Phys. Rev. B
18
,
5717
(
1981
);
(b)
C. B.
Duke
and
L. B.
Schein
,
Phys. Today
33
,
42
(
1980
);
(c)
C. B.
Duke
,
Mol. Cryst. Liq. Cryst.
50
,
63
(
1979
);
(d)
C. B.
Duke
,
T. J.
Fabish
, and
A.
Paton
,
Chem. Phys. Lett.
49
,
133
(
1977
).
20.
B.
Thémans
,
J. M.
André
, and
J. L.
Brédas
,
Mol. Cryst. Liq. Cryst.
118
,
121
(
1985
).
21.
J. P. Lowe, Quantum Chemistry (Academic, New York, 1978), pp. 460–461.
22.
Because of the choice of unit cell (Fig. 1) the formation of the biunit cell oligomer involves the addition of interactions between a phenyl ring of the new moiety and the imide of the original macromolecule. Even with a 30° twist there is still some pi conjugation across the bond, and hence the computed orbital eigenvalues and transition energies change slightly. A discussion of the rationale for this choice of unit cell was presented earlier in the paper.
23.
A spectroscopic study of the structural properties of PMDA‐ODA polyimide (Ref. 6) has suggested a pyramidal conformation about the imide nitrogen for nonzero twist angles. However, previous studies on the computation of the spectroscopic properties of anilines (Ref. 15) indicate that even for nonzero twist angles, the hybridization of the nitrogen atom is sp2, and this is the conformation used in this study.
24.
S. C.
Freilich
,
Macromolecules
20
,
973
(
1987
).
25.
T. A.
Gordina
,
B. V.
Kotov
,
O. V.
Kolninov
, and
A. N.
Pravednikov
,
Vysokomolek. Soyed. B
15
,
378
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.