A uniform epitaxial CoSi2 layer was grown on (100) Si substrate by rapid thermal annealing at 800 °C in N2 ambient without capping layers from an amorphous cobalt-carbon film. The amorphous cobalt-carbon film was deposited on Si substrate by the pyrolysis of cyclopentadienyl dicarbonyl cobalt, Co5C5H5)(CO)2, at 350 °C. The discrete epitaxial CoSi2 layers with {111} and (100) faceted interfaces were formed on (100) Si substrate at the initial stage of reaction between Co and Si. Annealing at elevated temperatures lowered the roughness of the CoSi2/Si interface. The leakage current measured on the junction, fabricated with the epitaxial CoSi2 layer and annealed at 1000 °C for 30 s, was as low as that of the as-fabricated junction without silicide. The result indicates that epitaxial (100) CoSi2 is thermally stable at temperatures even above 1000 °C and has potential application to the salicide process in subhalf micron devices.

1.
K.
Maex
,
Mater. Sci. Eng., R.
11
,
53
(
1993
).
2.
J. R.
Jimenez
,
L. J.
Schowalter
,
L. M.
Hsiung
,
K.
Rajan
,
S.
Hashimoto
,
R. D.
Thomson
, and
S. S.
Lyer
,
J. Vac. Sci. Technol. A
8
,
3014
(
1990
).
3.
R.
Pretorius
and
J. W.
Mayer
,
J. Appl. Phys.
81
,
2448
(
1997
).
4.
M. L. A.
Dass
,
D. B.
Fraser
, and
C. S.
Wei
,
Appl. Phys. Lett.
58
,
1308
(
1991
).
5.
R. T.
Tung
,
Appl. Phys. Lett.
68
,
3461
(
1996
).
6.
H. S.
Rhee
,
T. W.
Jang
, and
B. T.
Ahn
,
Appl. Phys. Lett.
74
,
1003
(
1999
).
7.
H. S.
Rhee
and
B. T.
Ahn
,
J. Electrochem. Soc.
146
,
2720
(
1999
).
8.
R.
Kaplan
and
N.
Bottka
,
Appl. Phys. Lett.
41
,
972
(
1982
).
9.
G. J. M.
Dormans
,
J. Cryst. Growth
108
,
806
(
1991
).
10.
G. J. M.
Dormans
,
G. J. B. M.
Meekes
, and
E. G. J.
Staring
,
J. Cryst. Growth
114
,
364
(
1991
).
11.
M. E.
Gross
,
K.
Schnoeskranz
,
D.
Brasen
, and
H.
Luftman
,
J. Vac. Sci. Technol. B
6
,
1548
(
1988
).
12.
G. A.
West
and
K. W.
Beeson
,
Appl. Phys. Lett.
53
,
740
(
1988
).
13.
R. T.
Tung
and
F.
Schrey
,
Appl. Phys. Lett.
67
,
2164
(
1995
).
14.
D. K.
Sohn
,
J. S.
Park
,
B. H.
Lee
,
J. U.
Bae
,
J. S.
Byun
, and
J. J.
Kim
,
Appl. Phys. Lett.
73
,
2302
(
1998
).
15.
A. H. V.
Ommen
,
C. W. T.
Bulle-Lieuwma
, and
C.
Langereis
,
J. Appl. Phys.
64
,
2706
(
1988
).
16.
M.
Barber
,
J. A.
Connor
,
L. M. R.
Derrick
,
M. B.
Hall
, and
I. H.
Hillier
,
J. Chem. Soc., Faraday Trans. 2
69
,
559
(
1973
).
17.
E. F.
Knights
and
H. C.
Brown
,
J. Am. Chem. Soc.
11
,
5284
(
1968
).
18.
A.
Lebugle
,
U.
Axelsson
,
R.
Nyholm
, and
N.
Martensson
,
Phys. Scr.
23
,
825
(
1981
).
19.
K.
Rajan
,
L. M.
Hsiung
,
J. R.
Jimenez
,
L. J.
Schowalter
,
K. V.
Ramanathan
,
R. D.
Thomson
, and
S. S.
Lyer
,
J. Appl. Phys.
70
,
4853
(
1991
).
20.
J. S.
Byun
,
S. B.
Kang
, and
H. J.
Kim
,
J. Appl. Phys.
74
,
3156
(
1993
).
21.
S. L.
Hsia
,
T. Y.
Tan
,
P.
Smith
, and
G. E.
McGuire
,
J. Appl. Phys.
72
,
1864
(
1992
).
22.
D. P.
Adams
,
S. M.
Yalisove
, and
D. J.
Eaglesham
,
J. Appl. Phys.
6
,
5190
(
1994
).
23.
J. W.
Cahn
and
D. W.
Hoffman
,
Acta Metall.
22
,
1205
(
1974
).
24.
J. E.
Taylor
and
J. W.
Cahn
,
Physica D
112
,
381
(
1998
).
25.
K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, Technology Digest International Electron Devices Meeting, 1995 (unpublished), p. 449.
This content is only available via PDF.
You do not currently have access to this content.