Tungsten oxide thin films with protons intercalated during deposition (HxWO3) were prepared using reactive direct-current-magnetron sputtering in a gas mixture of argon, oxygen, and hydrogen. The as-deposited films fabricated under suitable conditions were colored due to the formation of tungsten bronze. The concentration of intercalated protons, given by the x values in HxWO3, was evaluated by ejecting protons electrochemically from the films. The x value of the films prepared at a constant working pressure was found to be proportional to the hydrogen flow ratio during deposition. On the other hand, the x value of the films prepared at a constant hydrogen flow ratio decreased sharply with increasing working pressure during deposition. The dispersion of the extinction coefficient (κ) of the films was estimated by analyzing the experimental spectra of Ψ and Δ measured with spectroscopic ellipsometry using the model composed of a homogeneous tungsten bronze layer with an additional surface roughness layer. As a result of this analysis, the κ value was found to increase sharply with the number of intercalated protons. There was a linear dependence between the κ value and the x value for x<0.2, while for x>0.3, the absorption saturated. This indicates that it is possible to evaluate the x value of HxWO3 films using spectroscopic ellipsometry.

1.
J. N.
Huiberts
,
R.
Griessen
,
J. H.
Rector
,
R. J.
Wijngaargen
,
J. P.
Dekker
,
D. G.
de Groot
, and
N. J.
Koeman
,
Nature (London)
380
,
231
(
1996
).
2.
P. H. L.
Notten
,
M.
Kremers
, and
R.
Griessen
,
J. Electrochem. Soc.
143
,
3348
(
1996
).
3.
M.
Kremers
,
N. J.
Koeman
,
R.
Griessen
,
P. H. L.
Notten
,
R.
Tolboom
,
P. J.
Kelly
, and
P. A.
Duine
,
Phys. Rev. B
57
,
4943
(
1998
).
4.
S. J.
van der Molen
,
J. W. J.
Kerssemakers
,
J. H.
Rector
,
N. J.
Koeman
,
B.
Dam
, and
R.
Griessen
,
J. Appl. Phys.
86
,
6107
(
1999
).
5.
D. G.
Nagengast
,
J. W. J.
Kerssemakers
,
A. T. M.
van Gogh
,
B.
Dam
, and
R.
Griessen
,
Appl. Phys. Lett.
75
,
1724
(
1999
).
6.
T. J.
Richardson
,
J. L.
Slack
,
R. D.
Armitage
,
R.
Kostecki
,
B.
Farangis
, and
M. D.
Rubin
,
Appl. Phys. Lett.
78
,
3047
(
2001
).
7.
K.
Yoshimura
,
Y.
Yamada
, and
M.
Okada
,
Appl. Phys. Lett.
81
,
4709
(
2002
).
8.
K.
Tajima
,
Y.
Yamada
,
S.
Bao
,
M.
Okada
, and
K.
Yoshimura
,
Electrochem. Solid-State Lett.
10
,
J52
(
2007
).
9.
K.
Tajima
,
Y.
Yamada
, and
K.
Yoshimura
,
J. Electrochem. Soc.
154
,
J267
(
2007
).
10.
Y.
Yamada
,
K.
Tajima
,
S.
Bao
,
M.
Okada
, and
K.
Yoshimura
,
Jpn. J. Appl. Phys., Part 2
46
,
5168
(
2007
).
11.
K.
Bange
,
Sol. Energy Mater. Sol. Cells
58
,
1
(
1999
).
12.
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
60
,
201
(
2000
).
13.
G. A.
Niklasson
, and
C. G.
Granqvist
,
J. Mater. Chem.
17
,
127
(
2007
).
14.
R.
Jansson
,
S.
Zangooie
,
H.
Arwin
, and
K.
Järrendahl
,
Phys. Status Solidi B
218
,
R1
(
2000
).
15.
Y.
Yamada
,
S.
Kawaji
,
S.
Bao
,
M.
Okada
,
M.
Tazawa
,
K.
Yoshimura
, and
A.
Roos
,
Thin Solid Films
515
,
3825
(
2007
).
16.
K.
von Rottkay
,
M.
Rubin
, and
S.-J.
Wen
,
Thin Solid Films
306
,
10
(
1997
).
You do not currently have access to this content.