Surfactants are widely used to refold recombinant proteins that are produced as inclusion bodies in E. Coli. However, the microscopic details of the surfactant-assisted protein refolding processes are yet to be uncovered. In the present work, the authors aim to provide insights into the effect of hydrophobic interactions of a denatured protein with surfactant molecules on the refolding kinetics and equilibrium by using the Langevin dynamics for coarse-grained models. The authors have investigated the folding behavior of a β-barrel protein in the presence of surfactants of different hydrophobicities and concentrations. It is shown that the protein folding process follows a “collapse-rearrangement” mechanism, i.e., the denatured protein first falls into a collapsed state before acquiring the native conformation. In comparison with the protein folding without surfactants, the protein-surfactant hydrophobic interactions promote the collapse of a denatured protein and, consequently, the formation of a hydrophobic core. However, the surfactants must be released from the hydrophobic core during the rearrangement step, in which the native conformation is formed. The simulation results can be qualitatively reproduced by experiments.

1.
2.
J.
Buchner
and
R.
Rudolph
,
Biotechnology
9
,
157
(
1991
).
3.
A. D.
Guise
,
S. M.
West
, and
J. B.
Chaudhuri
,
Mol. Biotechnol.
6
,
53
(
1996
).
5.
S.
Tandon
and
P. M.
Horowitz
,
J. Biol. Chem.
261
,
15615
(
1986
).
6.
S.
Tandon
and
P. M.
Horowitz
,
J. Biol. Chem.
262
,
4486
(
1987
).
7.
S.
Tandon
and
P. M.
Horowitz
,
Biochim. Biophys. Acta
955
,
19
(
1988
).
8.
G.
Zardeneta
and
P. M.
Horowitz
,
Anal. Biochem.
223
,
1
(
1994
).
9.
D.
Rozema
and
S. H.
Gellman
,
J. Biol. Chem.
271
,
3478
(
1996
).
10.
J.
Wang
,
D. N.
Lu
,
Y.
Lin
, and
Z.
Liu
,
Biochem. Eng. J.
24
,
269
(
2005
).
11.
D. N.
Lu
,
Z.
Liu
,
Z. X.
Liu
,
M. L.
Zhang
, and
P. K.
Ouyang
,
J. Chem. Phys.
122
,
134902
1
(
2005
).
12.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
, and
A. H.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
13.
T.
Veitshans
,
D.
Klimov
, and
D.
Thirumalai
,
Folding Des.
2
,
1
(
1997
).
14.
D.
Klimov
and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
2544
(
2000
).
15.
D.
Klimov
,
D.
Newfield
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
8019
(
2002
).
16.
A.
Baumketner
,
A.
Jewett
, and
J. E.
Shea
,
J. Mol. Biol.
332
,
701
(
2003
).
17.
M.
Friedel
,
D. J.
Sheeler
, and
J. E.
Shea
,
J. Chem. Phys.
118
,
8106
(
2003
).
18.
D. N.
Lu
,
Z.
Liu
, and
J. Z.
Wu
,
Biophys. J.
90
,
3224
(
2006
).
19.
T.
Cellmer
,
D.
Bratko
,
J. M.
Prausnitz
, and
H.
Blanck
,
Biotechnol. Bioeng.
89
,
78
(
2005
).
20.
J.
Stockel
,
K.
Doring
,
J.
Malotka
,
F.
Jahnig
, and
K.
Dommair
,
Eur. J. Biochem.
248
,
684
(
1997
).
21.
D. B.
Wetlaufer
and
Y.
Xie
,
Protein Sci.
4
,
1535
(
1995
).
22.
J. C.
Pan
,
J. S.
Wang
,
Y.
Cheng
,
Z. H.
Yu
,
X. M.
Rao
, and
H. M.
Zhou
,
Biochem. Cell Biol.
83
,
140
(
2005
).
23.
R. D.
Cruz
,
F. G.
Whitby
,
O.
Buczek
, and
G.
Bulaj
,
J. Pept. Res.
61
,
202
(
2003
).
24.
M.
Krause
,
R.
Rudolph
, and
E.
Schwarz
,
FEBS Lett.
532
,
253
(
2002
).
25.
M. R.
Betancourt
and
D.
Thirumalai
,
J. Mol. Biol.
287
,
627
(
1999
).
26.
M. S.
Cheung
and
D.
Thirumalai
,
J. Mol. Biol.
357
,
632
(
2006
).
27.
A. I.
Jewett
and
J.-E.
Shea
,
J. Mol. Biol.
363
,
945
(
2006
).
28.
N. B.
Bam
,
J. L.
Cleland
, and
T. W.
Randolph
,
Biotechnology
12
,
801
(
1996
).
29.
D. K.
Chou
,
R.
Krishnamurthy
,
T. W.
Randolph
,
J. F.
Carpenter
, and
M. C.
Manning
,
J. Pharm. Sci.
94
,
1368
(
2005
).
30.
J.
Frydman
and
F. U.
Hartl
,
Science
272
,
1497
(
1996
).
31.
A.
Jewett
,
A.
Baumketner
, and
J. E.
Shea
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
13192
(
2004
).
32.
M.
Levitt
and
A.
Warshel
,
Nature (London)
253
,
693
(
1975
).
33.
You do not currently have access to this content.