Mist plasma evaporation (MPE) technique has been developed to deposit Ba0.6Sr0.4TiO3 (BST) thin films on SiO2Si and PtTiSiO2Si substrates at atmospheric pressure using metal nitrate aqueous solution as precursor. MPE is characterized by the injection of liquid reactants into thermal plasma where the source materials in the droplets are evaporated by the high temperature of the thermal plasma. Nanometer-scale clusters are formed in the tail flame of the plasma, and then deposited and rearranged on the substrate at a lower temperature. Due to the high temperature annealing process of the thermal plasma before deposition, well-crystallized BST films were deposited at substrate temperature of 630°C. The dielectric constant and dielectric loss of the film at 100kHz are 715 and 0.24, respectively. Due to the good crystallinity of the BST films deposited by MPE, high dielectric tunability up to 39.3% is achieved at low applied electric field of 100kVcm1.

1.
M. H.
Song
,
Y. H.
Lee
,
T. S.
Hahn
,
M. H.
Oh
, and
K. H.
Yoon
,
Solid-State Electron.
42
,
1711
(
1998
).
2.
C. M.
Carlson
,
T. V.
Rivkin
,
P. A.
Parilla
,
J. D.
Perkins
,
D. S.
Ginley
,
A. B.
Kozyrev
,
V. N.
Oshadchy
, and
A. S.
Pavlov
,
Appl. Phys. Lett.
76
,
1920
(
2000
).
3.
M. W.
Cole
,
W. D.
Nothwang
,
C.
Hubbard
,
E.
Ngo
, and
M.
Ervin
,
J. Appl. Phys.
93
,
9218
(
2003
).
4.
Y. A.
Jeon
,
E. S.
Choi
,
T. S.
Seo
, and
S. G.
Yoon
,
Appl. Phys. Lett.
79
,
1012
(
2001
).
5.
J. H.
Park
,
E. J.
Peterson
,
Q. X.
Jia
,
J.
Lee
,
X.
Zeng
,
S.
Si
, and
X. X.
Xi
,
Appl. Phys. Lett.
78
,
533
(
2001
).
6.
H.
Li
,
A. L.
Roytburd
,
S. P.
Alpay
,
T. D.
Tran
,
L.
Salamanca-Riba
, and
R.
Ramesh
,
Appl. Phys. Lett.
78
,
2354
(
2001
).
7.
P.
Padmini
,
T. R.
Taylor
,
M. J.
Lefevre
,
A. S.
Nagra
,
R. A.
York
, and
J. S.
Speck
,
Appl. Phys. Lett.
75
,
3186
(
1999
).
8.
Y. D.
Xia
,
D.
Wu
, and
Z. G.
Liu
,
J. Phys. D
37
,
2256
(
2004
).
9.
N.
Sugii
and
K.
Takagi
,
Thin Solid Films
323
,
63
(
1998
).
10.
B. H.
Park
,
Y.
Gim
,
Y.
Fan
,
Q. X.
Jia
, and
P.
Lu
,
Appl. Phys. Lett.
77
,
2587
(
2000
).
11.
H.
Huang
and
X.
Yao
,
J. Cryst. Growth
268
,
564
(
2004
).
12.
H.
Huang
,
X.
Yao
,
M. Q.
Wang
, and
X. Q.
Wu
,
J. Cryst. Growth
263
,
406
(
2004
).
13.
H.
Huang
and
X.
Yao
,
Mater. Chem. Phys.
87
,
134
(
2004
).
14.
Q. X.
Jia
,
H. H.
Kung
, and
X. D.
Wu
,
Thin Solid Films
299
,
115
(
1997
).
15.
M.
Nayak
,
S. Y.
Lee
, and
T. Y.
Tseng
,
Mater. Chem. Phys.
77
,
34
(
2002
).
16.
S. E.
Moon
,
E. K.
Kim
,
M. H.
Kwak
,
H. C.
Ryu
,
Y. T.
Kim
,
K. Y.
Kang
,
S. J.
Lee
, and
W. J.
Kim
,
Appl. Phys. Lett.
83
,
2166
(
2003
).
17.
C. L.
Canedy
,
H.
Li
,
S. P.
Alpay
,
L.
Salamanca-Riba
,
A. L.
Roytburd
, and
R.
Ramesh
,
Appl. Phys. Lett.
77
,
1695
(
2000
).
18.
Q. X.
Jia
,
B. H.
Park
,
B. J.
Gibbons
,
J. Y.
Huang
, and
P.
Lu
,
Appl. Phys. Lett.
81
,
114
(
2002
).
19.
M. S.
Tsai
,
S. C.
Sun
, and
T. Y.
Tseng
,
J. Appl. Phys.
82
,
3482
(
1997
).
20.
Y.
Gim
,
T.
Hudson
,
Y.
Fan
,
C.
Kwon
,
A. T.
Findikoglu
,
B. J.
Gibbons
,
B. H.
Park
, and
Q. X.
Jia
,
Appl. Phys. Lett.
77
,
1200
(
2000
).
21.
V. K.
Varadan
,
D. K.
Ghodgaonkar
,
V. V.
Varadan
,
J. F.
Kelly
, and
P.
Glikerdas
,
Microwave J.
35
,
116
(
1992
).
You do not currently have access to this content.