Piezoelectric Bi12GeO20 crystallizes in the cubic system with space group I23 and lattice constant a = 10.1455±0.0008 Å at 298°K. The complete x‐ray scattering pattern within a reciprocal lattice hemisphere of radius (sinθ)/λ = 1.02 Å−1 was determined with PEXRAD. A total of 4812 reflections were measured, resulting in 631 independent and significantly nonzero Fmeas. The crystal structure was solved using three‐dimensional Patterson and Fourier series, and refined by the method of least squares. The final agreement factor R is 0.062. The germanium atoms occupy geometrically regular tetrahedra, with Ge–O=1.717±0.028 Å. The bismuth atoms are heptacoordinated: five oxygen atoms form an incomplete octahedral arrangement, with Bi–O distances ranging from 2.076±0.027 to 2.640±0.028 Å. The remaining two oxygen atoms are electrostatically coordinated, on either side of the 6s2 inert electron pair in Bi3+, at distances of 3.082 and 3.170 Å from bismuth. The Bi atom vibrates anisotropically. The absolute configuration of the atomic arrangement has been determined. The positive piezoelectric polarization induced by compressive stress applied along 〈111〉 is given by the normal to a triangular GeO4 tetrahedral face in the direction from the Ge atom to the face.

1.
A. A.
Ballman
,
J. Crystal Growth
1
,
37
(
1967
).
2.
P. V.
Lenzo
,
E. G.
Spencer
, and
A. A.
Ballman
,
Appl. Opt.
5
,
1688
(
1966
).
3.
E. G.
Spencer
,
P. V.
Lenzo
, and
A. A.
Ballman
,
Appl. Phys. Letters
9
,
290
(
1966
).
4.
M.
Onoe
,
A. W.
Warner
, and
A. A.
Ballman
,
I.E.E.E. Trans. Sonics Ultrasonics
SU‐14
, No.
4
(October
1967
).
5.
B.
Aurivillius
and
L. G.
Sillén
,
Nature
155
,
305
(
1945
).
6.
E. M.
Levin
and
R. S.
Roth
,
J. Res. Natl. Bur. Std.
68A
,
197
(
1964
).
7.
G.
Gattow
and
D.
Schütze
,
Z. Anorg. Allgem. Chem.
328
,
44
(
1964
).
8.
W. C.
Schumb
and
E. S.
Rittner
,
J. Am. Chem. Soc.
65
,
1055
(
1943
).
9.
E. M.
Levin
and
R. S.
Roth
,
J. Res. Natl. Bur. Std.
,
68A
,
189
(
1964
).
10.
L. G.
Sillén
,
Arkiv Kemi, Min. Geol.
12A
(
18
),
1
(
1937
).
11.
L. G. Sillén, thesis, University of Stockholm, 1940.
12.
E. I.
Speranskaya
and
A. A.
Arshakuni
,
Zh. Neorg. Khim.
9
,
226
(
1964
).
13.
G.
Gattow
and
H.
Fricke
,
Z. Anorg. Allgem. Chem.
324
,
287
(
1963
).
14.
J. L.
Bernstein
,
J. Crystal Growth
1
,
45
(
1967
).
15.
S. C.
Abrahams
,
Rev. Sci. Instr.
33
,
973
(
1962
);
S. C.
Abrahams
,
34
,
1279
(
1963
).,
Rev. Sci. Instrum.
16.
S. C.
Abrahams
and
J. M.
Reddy
,
J. Chem. Phys.
43
,
2533
(
1965
).
17.
S. C.
Abrahams
and
J. L.
Bernstein
,
Acta Cryst.
18
,
926
(
1965
).
18.
See, for example,
S. C.
Abrahams
and
J. L.
Bernstein
,
J. Chem. Phys.
47
,
3776
(
1967
).
19.
B. B.
Cetlin
and
S. C.
Abrahams
,
Acta Cryst.
16
,
943
(
1963
).
20.
S. C.
Abrahams
,
J. M.
Reddy
, and
J. L.
Bernstein
,
J. Chem. Phys.
42
,
3957
(
1965
).
21.
S. C.
Abrahams
,
Acta Cryst.
17
,
1327
(
1964
).
22.
Error values here, and elsewhere in this paper, without decimal point correspond to the least significant digit in the function value.
23.
W. G. Sly, D. P. Shoemaker, and J. H. Van den Hende, International Union of Crystallography World List of Crystallographic Computer Programs, No. 357 (1962).
24.
W. R. Busing, K. O. Martin, and H. A. Levy, ORNL Report TM‐305 (1962), modified by B. B. Cetlin.
25.
D. T.
Cromer
and
J. T.
Waber
,
Acta Cryst.
18
,
104
(
1965
).
26.
International Tables for X‐Ray Crystallography (Kynoch Press, Birmingham, England, 1962), Vol. 3, p. 202.
27.
D. T.
Cromer
,
Acta Cryst.
18
,
17
(
1965
).
28.
Reference 24, modified by W. C. Hamilton.
29.
W. C.
Hamilton
,
Acta Cryst.
18
,
502
(
1965
).
30.
W. R. Busing, K. O. Martin, and H. A. Levy, ORNL Report TM‐306 (1964).
31.
A. A. Ballman (private communication).
32.
E. L.
Muetterties
and
C. M.
Wright
,
Quart. Rev. Chem. Soc. London
21
,
109
(
1967
).
33.
L. E. Orgel, J. Chem. Soc. 1959, 3815.
This content is only available via PDF.
You do not currently have access to this content.