We report on the rational synthesis of one-dimensional Cu2−xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2−xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3–0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2−xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.

1.
S. E.
Thompson
and
S.
Parthasarathy
,
Mater. Today
9
,
20
(
2006
).
2.
J. J.
Cai
,
J. S.
Jie
,
P.
Jiang
,
D.
Wu
,
C.
Xie
,
C. Y.
Wu
,
Z.
Wang
,
Y. Q.
Yu
,
L.
Wang
,
X. W.
Zhang
,
Q.
Peng
, and
Y.
Jiang
,
Phys. Chem. Chem. Phys.
13
,
14663
(
2011
).
3.
C.
Collier
,
E.
Wong
,
M.
Belohradský
,
F.
Raymo
,
J.
Stoddart
,
P.
Kuekes
,
R.
Williams
, and
J.
Heath
,
Science
285
,
391
(
1999
).
4.
C.
Xie
,
B.
Nie
,
L.
Zhu
,
L. H.
Zeng
,
Y. Q.
Yu
,
X. H.
Wang
,
Q. L.
Fang
,
L. B.
Luo
, and
Y. C.
Wu
,
Nanotechnol.
24
,
355203
(
2013
).
5.
Y. Q.
Yu
,
J. S.
Jie
,
P.
Jiang
,
L.
Wang
,
C. Y.
Wu
,
Q.
Peng
,
X. W.
Zhang
,
Z.
Wang
,
C.
Xie
,
D.
Wu
, and
Y.
Jiang
,
J. Mater. Chem.
21
,
12632
(
2011
).
6.
J. Y.
Tang
,
Z. Y.
Huo
,
S.
Brittman
,
H. W.
Gao
, and
P. D.
Yang
,
Nat. Nanotechnol.
6
,
568
(
2011
).
7.
R.
Waser
and
M.
Aono
,
Nat. Mater.
6
,
833
(
2007
).
8.
T.
Sakamoto
,
H.
Sunamura
,
H.
Kawaura
,
T.
Hasegawa
,
T.
Nakayama
, and
M.
Aono
,
Appl. Phys. Lett.
82
,
3032
(
2003
).
9.
L.
Chen
,
Y. D.
Xia
,
X. F.
Liang
,
K. B.
Yin
,
J.
Yin
,
Z. G.
Liu
, and
Y.
Chen
,
Appl. Phys. Lett.
91
,
073511
(
2007
).
10.
M.
Pyun
,
H.
Choi
,
J.-B.
Park
,
D.
Lee
,
M.
Hasan
,
R.
Dong
,
S.-J.
Jung
,
J.
Lee
,
D.-J.
Seong
, and
J.
Yoon
,
Appl. Phys. Lett.
93
,
212907
(
2008
).
11.
C.
Schindler
,
S. C. P.
Thermadam
,
R.
Waser
, and
M. N.
Kozicki
, I
EEE Trans. Electron Devices
54
,
2762
(
2007
).
12.
D.
Lee
,
D.-J.
Seong
,
H. J.
Choi
,
I.
Jo
,
F.
Xiang
,
R.
Dong
,
S.
Oh
,
S.
Seo
, and
H.
Hwang
, A
ppl. Phys. Lett.
90
,
122104
(
2007
).
13.
P.
Kumar
,
K.
Singh
, and
O. N.
Srivastava
,
J. Cryst. Growth
312
,
2804
(
2010
).
14.
A.
Hermann
and
L.
Fabick
,
J. Cryst. Grow.
61
,
658
(
1983
).
15.
A. A.
Korzhuev
,
Fiz. Khim Obrab. Mater.
3
,
131
(
1991
).
16.
V.
Bhuse
,
P.
Hankare
,
K.
Garadkar
, and
A.
Khomane
,
Mater. Chem. Phys.
80
,
82
(
2003
).
17.
J.
Xu
,
W. X.
Zhang
,
Z. H.
Yang
,
S. X.
Ding
,
C. Y.
Zeng
,
L. L.
Chen
,
Q.
Wang
, and
S. H.
Yang
,
Adv. Funct. Mater.
19
,
1759
(
2009
).
18.
Y.
Zhang
,
C. G.
Hu
,
C. H.
Zheng
,
Y.
Xi
, and
B. Y.
Wan
,
J. Phys. Chem. C
114
,
14849
(
2010
).
19.
Y. Q.
Yu
,
Y.
Jiang
,
P.
Jiang
,
Y. G.
Zhang
,
D.
Wu
,
Z. F.
Zhu
,
Q.
Liang
,
S. R.
Chen
,
Y.
Zhang
, and
J. S.
Jie
,
J. Mater. Chem. C
1
,
1238
(
2013
).
20.
Y. J.
Dong
,
G. H.
Yu
,
M. C.
McAlpine
,
W.
Lu
, and
C. M.
Lieber
,
Nano Lett.
8
,
386
(
2008
).
21.
J. I.
Sohn
,
S. S.
Choi
,
S. M.
Morris
,
J. S.
Bendall
,
H. J.
Coles
,
W.-K.
Hong
,
G.
Jo
,
T.
Lee
, and
M. E.
Welland
,
Nano Lett.
10
,
4316
(
2010
).
You do not currently have access to this content.