Skip to main content
Log in

Street network or functional attractors? Capturing pedestrian movement patterns and urban form with the integration of space syntax and MCDA

  • Original Article
  • Published:
URBAN DESIGN International Aims and scope Submit manuscript

Abstract

The space syntax approach has been widely applied in urban studies and practices to investigate urban form and predict pedestrian movement patterns. Prior research has identified the ‘circular causality’ associated with the ontology of space syntax, indicating that network structure and functional attractors are mutually reinforced by movement patterns in urban spaces. Using the city of Xi’an as a case study, this research aims to deepen the understanding of urban form and human movement patterns from a new perspective that integrates the space syntax approach with multi-criteria decision analysis (MCDA). To quantify the city’s attractors and gauge their impacts on its urban form, this research uses available open urban datasets, including street networks from OpenStreetMap (OSM) and Point of Interest (POI) data. Facilitated by sensitivity analysis (SA), the findings suggest that the functional distinctiveness of districts plays a nuanced role in attracting and generating pedestrian flow. It is therefore essential to introduce a ‘real-time’ representation of urban spaces to supplement our conventional understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A worked-out example of MCDA and SA can be found in the supplemental material of this paper.

References

  • Al-Sayed, K. 2018. Space Syntax Methodology. London: Bartlett School of Architecture, UCL.

    Google Scholar 

  • Amenta, P., A. Lucadamo, and G. Marcarelli. 2021. On the choice of weights for aggregating judgments in non-negotiable AHP group decision making. European Journal of Operational Research 288 (1): 294–301. https://doi.org/10.1016/j.ejor.2020.05.048.

    Article  Google Scholar 

  • Azmi, D.I., H.A. Karim, and M.Z.M. Amin. 2012. Comparing the walking behaviour between urban and rural residents. Procedia—Social and Behavioral Sciences 68: 406–416. https://doi.org/10.1016/j.sbspro.2012.12.237.

    Article  Google Scholar 

  • Batty, M. 2013. The New Science of Cities. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Batty, M. 2018. Inventing Future Cities. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Batty, M. 2019. Urban analytics defined. Environment and Planning b: Urban Analytics and City Science 46 (3): 403–405. https://doi.org/10.1177/2399808319839494.

    Article  Google Scholar 

  • Brunelli, M., and M. Fedrizzi. 2015. Axiomatic properties of inconsistency indices for pairwise comparisons. Journal of the Operational Research Society 66 (1): 1–15.

    Article  Google Scholar 

  • Brunelli, M., and M. Fedrizzi. 2015. Boundary properties of the inconsistency of pairwise comparisons in group decisions. European Journal of Operational Research 240 (3): 765–773.

    Article  Google Scholar 

  • Brunelli, M., L. Canal, and M. Fedrizzi. 2013. Inconsistency indices for pairwise comparison matrices: A numerical study. Annals of Operations Research 211 (1): 493–509.

    Article  Google Scholar 

  • Burgess, E.W. 1935. The Growth of the City: An Introduction to a Research Project. London: Ardent Media.

    Google Scholar 

  • Chen, P.N., and K. Karimi. 2019. Spatial impact of new public transport system on station neighbourhoods: The cases of Jubilee Line Extension in London. In The Proceedings of the 12th International Space Syntax Symposium (12SSS). Beijing Jiatong University.

  • Chen, Y., J. Yu, and S. Khan. 2010. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software 25 (12): 1582–1591. https://doi.org/10.1016/j.envsoft.2010.06.001.

    Article  Google Scholar 

  • Coffey, L., and D. Claudio. 2021. In defense of group fuzzy AHP: A comparison of group fuzzy AHP and group AHP with confidence intervals. Expert Systems with Applications 178: 114970. https://doi.org/10.1016/j.eswa.2021.114970.

    Article  Google Scholar 

  • Crooks, A.T., A. Croitoru, A. Jenkins, et al. 2016. User-generated big data and urban morphology. Built Environment 42 (3): 396–414. https://doi.org/10.2148/benv.42.3.396.

    Article  Google Scholar 

  • Crosetto, M., S. Tarantola, and A. Saltelli. 2000. Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems & Environment 81 (1): 71–79. https://doi.org/10.1016/S0167-8809(00)00169-9.

    Article  Google Scholar 

  • Dong, Q., and O. Cooper. 2016. A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making. European Journal of Operational Research 250 (2): 521–530. https://doi.org/10.1016/j.ejor.2015.09.016.

    Article  Google Scholar 

  • Dong, Y., G. Zhang, W.-C. Hong, et al. 2010. Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems 49 (3): 281–289. https://doi.org/10.1016/j.dss.2010.03.003.

    Article  Google Scholar 

  • Emrouznejad, A., and M. Marra. 2017. The state of the art development of AHP (1979–2017): A literature review with a social network analysis. International Journal of Production Research 55 (22): 6653–6675. https://doi.org/10.1080/00207543.2017.1334976.

    Article  Google Scholar 

  • Era, R.T. 2012. Improving pedestrian accessibility to public space through space syntax analysis. In Proceedings of the 8th International Space Syntax Symposium, Santiago, PUC, 2012.

  • Fan, H., A. Zipf, Q. Fu, et al. 2014. Quality assessment for building footprints data on OpenStreetMap. International Journal of Geographical Information Science 28 (4): 700–719. https://doi.org/10.1080/13658816.2013.867495.

    Article  Google Scholar 

  • Feick, R., and B. Hall. 2004. A method for examining the spatial dimension of multi-criteria weight sensitivity. International Journal of Geographical Information Science 18 (8): 815–840. https://doi.org/10.1080/13658810412331280185.

    Article  Google Scholar 

  • Feick, R.D., and G.B. Hall. 2000. The application of a spatial decision support system to tourism-based land management in small island states. Journal of Travel Research 39 (2): 163–171.

    Article  Google Scholar 

  • Feick, R.D., and G.B. Hall. 2001. Balancing consensus and conflict with a GIS-based multi-participant, multi-criteria decision support tool. GeoJournal 53 (4): 391–406.

    Article  Google Scholar 

  • Feizizadeh, B., P. Jankowski, and T. Blaschke. 2014. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Computers & Geosciences 64: 81–95. https://doi.org/10.1016/j.cageo.2013.11.009.

    Article  Google Scholar 

  • Foda, M.A., and A.O. Osman. 2010. Using GIS for measuring transit stop accessibility considering actual pedestrian road network. Journal of Public Transportation 13 (4): 2.

    Article  Google Scholar 

  • Foltête, J.-C., and A. Piombini. 2007. Urban layout, landscape features and pedestrian usage. Landscape and Urban Planning 81 (3): 225–234. https://doi.org/10.1016/j.landurbplan.2006.12.001.

    Article  Google Scholar 

  • Froy, F., and H. Davis. 2017. Pragmatic urbanism: London’s railway arches and small-scale enterprise. European Planning Studies 25 (11): 2076–2096. https://doi.org/10.1080/09654313.2017.1367141.

    Article  Google Scholar 

  • Garreau, J. 1992. Edge City: Life on the New Frontier. New York: Anchor.

    Google Scholar 

  • Gil, J. 2017. Street network analysis “edge effects”: Examining the sensitivity of centrality measures to boundary conditions. Environment and Planning B: Urban Analytics and City Science 44 (5): 819–836. https://doi.org/10.1177/0265813516650678.

    Article  Google Scholar 

  • Gil, J., T. Varoudis, K. Karimi, et al. 2015. The space syntax toolkit: Integrating depthmapX and exploratory spatial analysis workflows in QGIS. In SSS 2015–10th International Space Syntax Symposium, 2015. Space Syntax Laboratory, The Bartlett School of Architecture, UCL.

  • Gompf, K., M. Traverso, and J. Hetterich. 2021. Using analytical hierarchy process (AHP) to introduce weights to social life cycle assessment of mobility services. Sustainability 13 (3): 1258. https://doi.org/10.3390/su13031258.

    Article  Google Scholar 

  • Grajewski, T., and L. Vaughan. 2001. Space syntax observation manual. London: UCL Bartlett and Space Syntax Limited.

    Google Scholar 

  • Greene, R., R. Devillers, J.E. Luther, et al. 2011. GIS-based multiple-criteria decision analysis: GIS-based MCDA. Geography Compass 5 (6): 412–432. https://doi.org/10.1111/j.1749-8198.2011.00431.x.

    Article  Google Scholar 

  • Gu K and Zhang J (2014) Cartographical sources for urban morphological research in China.

  • Harris, C.D., and E.L. Ullman. 1945. The nature of cities. The Annals of the American Academy of Political and Social Science 242 (1): 7–17.

    Article  Google Scholar 

  • Hillier, B. 1997. Cities as movement economies. In Intelligent Environments, ed. P. Droege, 295–342. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hillier, B. 1999. Centrality as a process: Accounting for attraction inequalities in deformed grids. Urban Design International 4 (3–4): 107–127. https://doi.org/10.1080/135753199350036.

    Article  Google Scholar 

  • Hillier, B. 2014. The generic city and its origins. Architectural Design 84 (5): 100–105. https://doi.org/10.1002/ad.1815.

    Article  Google Scholar 

  • Hillier, B. 2016. What are cities for? And how does it relate to their spatial form? The Journal of Space Syntax 6 (2): 199–212.

    Google Scholar 

  • Hillier, B., and J. Hanson. 1984. The Social Logic of Space. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hillier, B., and S. Iida. 2005. Network and psychological effects in urban movement. In International Conference on Spatial Information Theory, 475–490. Springer.

  • Hillier, B., A. Penn, J. Hanson, et al. 1993. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environment and Planning b: Planning and Design 20 (1): 29–66. https://doi.org/10.1068/b200029.

    Article  Google Scholar 

  • Hillier, B., T. Yang, and A. Turner. 2012. Normalising least angle choice in Depthmap-and how it opens up new perspectives on the global and local analysis of city space. Journal of Space Syntax 3 (2): 155–193.

    Google Scholar 

  • Hölscher, C., M. Brösamle, and G. Vrachliotis. 2012. Challenges in multilevel wayfinding: A case study with the space syntax technique. Environment and Planning B: Planning and Design 39 (1): 63–82. https://doi.org/10.1068/b34050t.

    Article  Google Scholar 

  • Hoyt, H. 1939. The structure and growth of residential neighborhoods in American cities. Washington, DC: Federal Housing Administration.

    Google Scholar 

  • Jacobs, J. 1961. The Death and Life of Great American Cities. New-York: Vintage.

    Google Scholar 

  • Jiang, B. 2009. Ranking spaces for predicting human movement in an urban environment. International Journal of Geographical Information Science 23 (7): 823–837.

    Article  Google Scholar 

  • Jiang, B., and C. Claramunt. 2002. Integration of space syntax into GIS: New perspectives for urban morphology. Transactions in GIS 6 (3): 295–309. https://doi.org/10.1111/1467-9671.00112.

    Article  Google Scholar 

  • Jokar Arsanjani, J., A. Zipf, P. Mooney, et al. 2015. An introduction to OpenStreetMap in geographic information science: Experiences, research, and applications. In: OpenStreetMap in GIScience: Experiences, Research, and Applications, eds. J. Jokar Arsanjani, A. Zipf, P. Mooney, et al. Lecture Notes in Geoinformation and Cartography, 1–15. Cham: Springer. https://doi.org/10.1007/978-3-319-14280-7_1.

  • Ker, I., and S. Ginn. 2003. Myths and realities in walkable catchments: The case of walking and transit. Road & Transport Research 12 (2): 69.

    Google Scholar 

  • Kim, G., A. Kim, and Y. Kim. 2019. A new 3D space syntax metric based on 3D isovist capture in urban space using remote sensing technology. Computers, Environment and Urban Systems 74: 74–87. https://doi.org/10.1016/j.compenvurbsys.2018.11.009.

    Article  Google Scholar 

  • Knöll, M., K. Neuheuser, T. Cleff, et al. 2018. A tool to predict perceived urban stress in open public spaces. Environment and Planning B: Urban Analytics and City Science 45 (4): 797–813. https://doi.org/10.1177/0265813516686971.

    Article  Google Scholar 

  • Lan, T., M. Yu, Z. Xu, et al. 2018. Temporal and spatial variation characteristics of catering facilities based on POI data: a case study within 5th Ring Road in Beijing. Procedia Computer Science 131: 1260–1268. https://doi.org/10.1016/j.procs.2018.04.343.

    Article  Google Scholar 

  • Law, S., F.L. Sakr, and M. Martinez. 2014. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective. Behavioral Sciences 4 (3): 278–300. https://doi.org/10.3390/bs4030278.

    Article  Google Scholar 

  • Lerman, Y., Y. Rofè, and I. Omer. 2014. Using space syntax to model pedestrian movement in urban transportation planning: using space syntax in transportation planning. Geographical Analysis 46 (4): 392–410. https://doi.org/10.1111/gean.12063.

    Article  Google Scholar 

  • Li, H., and R. Zhang. 2012. Urban form transformation of Xi’an in history and its impact on the city in present. Human Culture Heritage Preservation: 17–26.

  • Li, Y., Li, J., Y. Yuan, et al. 2019. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi’an, Shaanxi, China. Cities 86: 62–70. https://doi.org/10.1016/j.cities.2018.12.008.

    Article  Google Scholar 

  • Li, X., Z. Lv, Z. Zheng, et al. 2017. Assessment of lively street network based on geographic information system and space syntax. Multimedia Tools and Applications 76 (17): 17801–17819. https://doi.org/10.1007/s11042-015-3095-2.

    Article  Google Scholar 

  • Li, Y., L. Xiao, Y. Ye, et al. 2016. Understanding tourist space at a historic site through space syntax analysis: The case of Gulangyu, China. Tourism Management 52: 30–43. https://doi.org/10.1016/j.tourman.2015.06.008.

    Article  Google Scholar 

  • Lin, W. 2018. Volunteered Geographic Information constructions in a contested terrain: A case of OpenStreetMap in China. Geoforum 89 (1): 73–82. https://doi.org/10.1016/j.geoforum.2018.01.005.

    Article  Google Scholar 

  • Liu, P., X. Xiao, J. Zhang, et al. 2018. Spatial configuration and online attention: A space syntax perspective. Sustainability 10 (1): 221. https://doi.org/10.3390/su10010221.

    Article  Google Scholar 

  • Liu, X., and Y. Long. 2016. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environment and Planning B: Planning and Design 43 (2): 341–360. https://doi.org/10.1177/0265813515604767.

    Article  Google Scholar 

  • Long, Y., M. Li, and J. Li. 2018. Monitoring built environment of China with new data: Indicator system and case studies. Urban Development Studies 25 (4): 86–96.

    Google Scholar 

  • Malczewski, J. 2006. GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science 20 (7): 703–726. https://doi.org/10.1080/13658810600661508.

    Article  Google Scholar 

  • Malczewski, J., and C. Rinner. 2015. Multicriteria decision analysis in geographic information science. Advances in Geographic Information Science. Springer, Berlin. https://doi.org/10.1007/978-3-540-74757-4.

  • Mansouri, M., and N. Ujang. 2017. Space syntax analysis of tourists’ movement patterns in the historical district of Kuala Lumpur, Malaysia. Journal of Urbanism: International Research on Placemaking and Urban Sustainability 10 (2): 163–180. https://doi.org/10.1080/17549175.2016.1213309.

    Article  Google Scholar 

  • Marcus, L. 2010. Spatial capital. The Journal of Space Syntax 1 (1): 30–40.

    Google Scholar 

  • Mohamed, A.A. 2016. People’s movement patterns in space of informal settlements in Cairo metropolitan area. Alexandria Engineering Journal 55 (1): 451–465. https://doi.org/10.1016/j.aej.2015.07.018.

    Article  Google Scholar 

  • Monokrousou, K., and M. Giannopoulou. 2016. Interpreting and predicting pedestrian movement in public space through space syntax analysis. Procedia—Social and Behavioral Sciences 223: 509–514. https://doi.org/10.1016/j.sbspro.2016.05.312.

    Article  Google Scholar 

  • Mosadeghi, R., J. Warnken, R. Tomlinson, et al. 2015. Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems 49: 54–65. https://doi.org/10.1016/j.compenvurbsys.2014.10.001.

    Article  Google Scholar 

  • Niu, N., X. Liu, H. Jin, et al. 2017. Integrating multi-source big data to infer building functions. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2017.1325489.

    Article  Google Scholar 

  • Obeidat, B.B., and I.A. Al-Hashimi. 2015. Pedestrian risk index for Irbid city, Jordan. In International Space Syntax Symposium, pp. 207–220.

  • Oliveira, V. 2016. Urban morphology. New York: Springer.

    Book  Google Scholar 

  • Omer, I., and R. Goldblatt. 2016. Spatial patterns of retail activity and street network structure in new and traditional Israeli cities. Urban Geography 37 (4): 629–649. https://doi.org/10.1080/02723638.2015.1101258.

    Article  Google Scholar 

  • Omer, I., and N. Kaplan. 2017. Using space syntax and agent-based approaches for modeling pedestrian volume at the urban scale. Computers, Environment and Urban Systems 64: 57–67. https://doi.org/10.1016/j.compenvurbsys.2017.01.007.

    Article  Google Scholar 

  • Ozbil, A., J. Peponis, and B. Stone. 2011. Understanding the link between street connectivity, land use and pedestrian flows. Urban Design International 16 (2): 125–141. https://doi.org/10.1057/udi.2011.2.

    Article  Google Scholar 

  • Park, H-.T. 2009. Boundary effects on the intelligibility and predictability of spatial systems. In Proceedings of the 7th International Space Syntax Symposium, 2009, pp. 8–11.

  • Penn, A. 2003. Space syntax and spatial cognition: Or why the axial line? Environment and Behavior 35 (1): 30–65. https://doi.org/10.1177/0013916502238864.

    Article  Google Scholar 

  • Pont, M.B., and L. Marcus. 2015. What can typology explain that configuration cannot. In SSS10 proceedings of the 10th international space syntax symposium, pp. 1–43.

  • Porta, S., E. Strano, V. Iacoviello, et al. 2009. Street centrality and densities of retail and services in Bologna, Italy. Environment and Planning B: Planning and Design 36 (3): 450–465. https://doi.org/10.1068/b34098.

    Article  Google Scholar 

  • Qureshi, M.E., S.R. Harrison, and M.K. Wegener. 1999. Validation of multicriteria analysis models. Agricultural Systems 62 (2): 105–116. https://doi.org/10.1016/S0308-521X(99)00059-1.

    Article  Google Scholar 

  • Raford, N., and D. Ragland. 2006. Pedestrian Volume Modeling for Traffic Safety and Exposure Analysis: The Case of Boston, Massachusetts. https://escholarship.org/uc/item/61n3s4zr. Accessed 22 Feb 2020.

  • Rashid, M. 2019. Space Syntax: A Network-Based Configurational Approach to Studying Urban Morphology. In D’Acci, L. (ed.) The Mathematics of Urban Morphology. Modeling and Simulation in Science, Engineering and Technology. Cham: Springer, pp. 199–251. DOI: https://doi.org/10.1007/978-3-030-12381-9_10.

  • Ratti, C. 2004. Space syntax: Some inconsistencies. Environment and Planning b: Planning and Design 31 (4): 487–499. https://doi.org/10.1068/b3019.

    Article  Google Scholar 

  • Saaty, T.L. 1989. Group decision making and the AHP. In The Analytic Hierarchy Process, ed. B. Golden, E. Wasil, and P. Harker, 59–67. Berlin: Springer.

    Chapter  Google Scholar 

  • Saltelli, A., and P. Annoni. 2010. How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software 25 (12): 1508–1517. https://doi.org/10.1016/j.envsoft.2010.04.012.

    Article  Google Scholar 

  • Scheer, B.C. 2001. The anatomy of sprawl. Places, 14(2).

  • Soja EW (2000) Postmetropolis Critical studies of cities and regions.

  • Space Syntax. (n.d.). The Space Syntax approach | Space Syntax. Available at: https://spacesyntax.com/the%20space%20syntax%20approach/. Accessed 7 Jan 2021.

  • Turner, A. 2007a. From axial to road-centre lines: a new representation for space syntax and a new model of route choice for transport network analysis. Environment and Planning b: Planning and Design 34 (3): 539–555. https://doi.org/10.1068/b32067.

    Article  Google Scholar 

  • Turner, A., A. Penn, and B. Hillier. 2005. An Algorithmic Definition of the Axial Map. Environment and Planning b: Planning and Design 32 (3): 425–444. https://doi.org/10.1068/b31097.

    Article  Google Scholar 

  • United Nations. (n.d.) Sustainable transport |Department of Economic and Social Affairs. Available at: https://sdgs.un.org/topics/sustainable-transport. Accessed 5 Jan 2021.

  • Vaughan, L., C.E. Jones, S. Griffiths, et al. 2010. The spatial signature of suburban town centres. The Journal of Space Syntax 1 (1): 77–91.

    Google Scholar 

  • Wang, F., C. Chen, C. Xiu, et al. 2014. Location analysis of retail stores in Changchun, China: A street centrality perspective. Cities 41: 54–63. https://doi.org/10.1016/j.cities.2014.05.005.

    Article  Google Scholar 

  • Wang, F., J. He, C. Jiang, et al. 2018. Evolution of the commercial blocks in ancient Beijing city from the street network perspective. Journal of Geographical Sciences 28 (6): 845–868. https://doi.org/10.1007/s11442-018-1509-6.

    Article  Google Scholar 

  • Wu, L. 1986. A Brief History of Ancient Chinese City Planning. Kassel: Gesamthochschulbibliothek.

    Google Scholar 

  • Wu, Z., and J. Xu. 2012. A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decision Support Systems 52 (3): 757–767. https://doi.org/10.1016/j.dss.2011.11.022.

    Article  Google Scholar 

  • Xu, Y., K.W. Li, and H. Wang. 2013. Distance-based consensus models for fuzzy and multiplicative preference relations. Information Sciences 253: 56–73. https://doi.org/10.1016/j.ins.2013.08.029.

    Article  Google Scholar 

  • Ye, Y., and A. van Nes. 2014. Quantitative tools in urban morphology: Combining space syntax, spacematrix and mixed-use index in a GIS framework. Urban Morphology 18 (2): 97–118.

    Article  Google Scholar 

  • Ye, Y., A. Yeh, Y. Zhuang, et al. 2017. “Form Syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design. URBAN DESIGN International 22 (1): 73–90. https://doi.org/10.1057/s41289-016-0035-3.

    Article  Google Scholar 

  • Ye, Y., D. Li, and X. Liu. 2018. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geography 39 (4): 631–652. https://doi.org/10.1080/02723638.2017.1381536.

    Article  Google Scholar 

  • Yigitcanlar T, Sipe N, Evans R, et al. (2007) A GIS‐based land use and public transport accessibility indexing model. Australian planner 44(3). Taylor & Francis: 30–37.

  • Zeng C, Yang L and Dong J (2017) Management of urban land expansion in China through intensity assessment: A big data perspective. Journal of Cleaner Production 153(Complete): 637–647. DOI: https://doi.org/10.1016/j.jclepro.2016.11.090.

  • Zertuche LN, Davis H, Griffiths S, et al. (2017) The spatial ordering of knowledge economies: the growth of furniture industry in nineteenth-century London. In: Proceedings-11th International Space Syntax Symposium, SSS 2017, 2017, p. 95.1–95.22. Instituto Superior Tecnico, Departamentode Engenharia Civil, Arquitetura e

  • Zhang, Y., X. Li, A. Wang, et al. 2015. Density and diversity of OpenStreetMap road networks in China. Journal of Urban Management 4 (2): 135–146.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Robert Feick for his suggestions on the earlier draft, and the anonymous reviewers for their helpful and constructive comments. The usual disclaimers apply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 10485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Qian, Z. Street network or functional attractors? Capturing pedestrian movement patterns and urban form with the integration of space syntax and MCDA. Urban Des Int 28, 3–18 (2023). https://doi.org/10.1057/s41289-022-00178-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41289-022-00178-w

Keywords

Navigation