Skip to main content

Origins and Applications of Music in Chronic Illness: Role of the Voice, Ancient Chant Scales, and Autonomic Nervous System

  • Chapter
Chronic Illness, Spirituality, and Healing
  • 237 Accesses

Abstract

Simple ancient chant scales were used prescriptively by our ancestors to treat chronic illness. These scales are remarkably similar to human vocal patterns, suggesting their healing power is related to something inherently whole already within us (Gill & Purves, 2009; Ross et al., 2007). Because we experience all of life as some form of frequency through our five senses of sight, sound, smell, taste, and touch, our body selectively uses frequencies to initiate behaviors and coordinate our well-being. The vast neural, neurohormonal, and emotional responses seen with music, a form of ordered frequencies, imply a primary role for our autonomic nervous system (ANS) in discriminating audio frequencies for the management of emotions, motion, and communication (Ellis & Thayer, 2010; Porges, 2011). Hardwired from birth, we have a predilection for vocal frequency intervals and selectively filter them to communicate our physiologic state (i.e. fear or calm) and guide overall health. Spiritual healers of diverse healing traditions appear to have keenly understood our innate preferences for precise distances between two tones (i.e. intervals) and used music to mirror these inborn audio-vocal cues for modifying ANS cognitive, physical, emotional, and spiritual states. For them, the sacred healing power of music lay primarily in the unique and ineffable supremacy of the human voice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrams, D., Bhatara, A., Ryali, S., Balaban, E., Levitin, D., & Menon, V. (2010). Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cerebral Cortex, 21(7), 1507–1518.

    Article  Google Scholar 

  • Apel, W. (1958). Gregorian chant. Bloomington: Indiana University Press.

    Google Scholar 

  • Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229–240.

    Article  Google Scholar 

  • Bernardi, L., Porta, C., & Sleight, P. (2006). Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: The importance of silence. Heart, 92, 445–452.

    Article  Google Scholar 

  • Bernardi, L., Sleight, P., Bandinelli, G., Cencetti, S., Fattorini, L., Wdowczk-Szulc, J., & Lagi, A. (2001). Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: Comparative study. British Medical Journal, 323, 1446–1449.

    Article  Google Scholar 

  • Bernston, G., Bigger, T., Eckberg, D. L., Grossman, P., Kaufman, P. G., Malik, M.,… & Maurits W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.

    Article  Google Scholar 

  • Bonini, L., & Ferrari, P. F. (2011). Evolution of mirror systems: A simple mechanism for complex cognitive functions. Annals of the New York Academy of Sciences, 1225(1), 166–175.

    Article  Google Scholar 

  • Bowling, D. L., Gill, K., Choi, J. D., Prinz, J., & Purves, D. (2010). Major and minor music compared to excited and subdued speech. Journal of the Acoustical Society of America, 127(1), 491–503.

    Article  Google Scholar 

  • Burns, S. J., Harbuz, M. S., Hucklebridge, F., & Bunt, L. (2001). A pilot study into the therapeutic effects of music therapy at a cancer help center. Alternative Therapies in Health and, Medicine, 7(1), 48–56.

    Google Scholar 

  • Chiu, H. W., Lin, L. S., Kuo, M. C., Chiang, H. S., & Hsu, C. Y. (2003). Using heart rate variability analysis to assess the effects of music therapy on anxiety reduction in patients. Computers in Cardiology, 30, 469–472.

    Google Scholar 

  • Correa, D. C., Saito, J. H., & Costa, L. F. (2010). Musical genres: Beating to the rhythms of different drums. New Journal of Physics, 12, 1–37, doi:10.1088/13672630/12/5/053030

    Article  Google Scholar 

  • Cox, H., & Roberts, P. (2012). The harp and the ferryman: Journeys of healing. Melbourne, Australia: Michelle Anderson Publishing Pty Ltd.

    Google Scholar 

  • Curtis, M. E., & Bharucha, J. J. (2010). The minor third communicates sadness in speech, mirroring its use in music. Emotion, 10(3), 335–348.

    Article  Google Scholar 

  • D’Ausilio, A. (2009). Mirror-like mechanisms and music. The Scientific World Journal, 9, 1415–1422.

    Article  Google Scholar 

  • Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298, 2013–2015.

    Article  Google Scholar 

  • Demetria, M. (1960). Basic Gregorian chant and, sight reading. Toledo, OH: Gregorian Institute of America.

    Google Scholar 

  • Ellis, R. J., & Thayer, J. F. (2010). Music and autonomic nervous system (dys)function. Music Perception, 27(4), 317–326.

    Article  Google Scholar 

  • Flores-Gutierrez, E. O., Diaz, J., Barrios, F. A., Favila-Humara, R., Guevara, M. A., del Rio-Portilla, Y., & Corsi-Cabrera, M. (2007). Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. International Journal of Psychophysiology, 65, 69–84.

    Article  Google Scholar 

  • Fredrickson, B. L., Mancuso, R. A., Branigan, C., & Tugade, M. M. (2000). The undoing effect of positive emotions. Motivation and Emotion, 24, 237–258.

    Article  Google Scholar 

  • Freeman, L., Caserta, M., Lund, D., Rossa, S., Dowdy, A., & Partenheimer, A. (2006). Music thanatology: Prescriptive harp music as palliative care for the dying patient. American Journal Hospice and Palliative Medicine, 23(2), 100–104.

    Article  Google Scholar 

  • Gajard, J. (1945). The rhythm of plainsong according to the Solesmes school. New York: J. Fischer and Brothers.

    Google Scholar 

  • Gardner, K. (1990). Sounding the inner landscape: Music as medicine. Stonington, ME: Caduceus Publications.

    Google Scholar 

  • Gass, R. (1999). Chanting: Discovering spirit in sound. New York: Broadway Books.

    Google Scholar 

  • Gerra, G., Zaimovic, A., Franchini, D., Palladino, M., Giucastro, G., Reali, N.,… & Brambilla, F. (1998). Neuroendocrine responses in healthy volunteers to ‘techno-music’: Relationships with personality traits and emotional state. International Journal of Psychophysiology, 28, 99–111.

    Article  Google Scholar 

  • Gill, K. Z., & Purves, D. (2009). A biological rationale for musical scales. PloS ONE, 4(12), e8144. doi:10.1371/journal.pone.0008144

    Article  Google Scholar 

  • Gomez, P., & Danuser, B. (2007). Relationships between musical structure and psychophysiological measures of emotion. Emotion, 7(2), 377–387.

    Article  Google Scholar 

  • Green, A. C., Baerentsen, K. B., Stodkilde-Jorgensen, H., Wallentin, M., Roepstorff, A., & Vuust, P. (2008). Music in minor activates limbic structures: A relationship with dissonance? NeuroReport, 19(7), 711–715.

    Article  Google Scholar 

  • Haas, F., Distenfeld, S., & Axen, K. (1986). Effects of perceived musical rhythm on respiratory pattern. Journal of Applied Physiology, 61(3), 1185–1191.

    Google Scholar 

  • Ho, T., & Chen, X. (2011). iHeartLift: A closed loop system with biofeedback that uses music tempo variability to improve heart rate variability. Conference Proceedings: IEEE, Engineering in Medicine and Biology Society,: 1181–1184.

    Google Scholar 

  • Huron, D. (2008). A comparison of average pitch height and interval size in major and minor key themes: Evidence consistent with affect-related pitch prosody. Empirical Musicology Review, 3(2), 59–63.

    Google Scholar 

  • Huron, D., Dahl, S., & Johnson, R. (2009). Facial expression and vocal pitch height: Evidence of an intermodal association. Empirical Musicology Review, 4(3), 93–100.

    Google Scholar 

  • Huron, D., Kinney, D., & Precoda, K. (2006). Influence of pitch height on the perception of submissiveness and threat in musical passages. Empirical Musicology Review, 1(3), 170–177.

    Google Scholar 

  • Huron, D. & Veltman, J. (2006). Cognitive approach to medieval mode: Evidence for an historical antecedent to the major/minor system. Empirical Musicology Review, 1(1), 33–55.

    Google Scholar 

  • Iwanaga, M., Kobayashi, A., & Kawasaki, C. (2005). Heart rate variability with repetitive exposure to music. Biological Psychology, 70, 61–66.

    Article  Google Scholar 

  • Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129(5), 770–814.

    Article  Google Scholar 

  • Kemper, K., & Hamilton, C. (2008). Live harp music reduces activity and increases weight gain in stable premature infants. Journal of Alternative and Complementary Medicine, 14(10), 1185–1186.

    Article  Google Scholar 

  • Khalfa, S., Roy, M., Rainville, P., Bella, S. D., & Peretz, I. (2008). Role of tempo entrainment in psychophysiological differentiation of happy and sad music? International Journal of Psychophysiology, 68, 17–26.

    Article  Google Scholar 

  • Khalfa, S., Schon, D., Anton, J., & Liegeois-Chauvel, C. (2005). Brain regions involved in the recognition of happiness and sadness in music. NeuroReport, 16, 1981–1984.

    Article  Google Scholar 

  • Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences, 104(30), 12577–12580.

    Article  Google Scholar 

  • Kinzler, K. D., Shutts, K, DeJesus, J., & Spelke, E. S. (2009). Accent trumps race in guiding children’s social preferences. Social Cognitive and Affective Neuroscience, 27(4), 623–634.

    Google Scholar 

  • Kinzler, K. D. & Spelke, E. S. (2011). Do infants show social preferences for people differing in race? Cognition, 119(1), 1–9.

    Article  Google Scholar 

  • Koelsch, S. (2005). Investigating emotions with music. Annals of the New York Academy of Sciences, 1060, 412–418.

    Article  Google Scholar 

  • Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131–137.

    Article  Google Scholar 

  • Koelsch, S., Fritz, T., Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239–250.

    Article  Google Scholar 

  • Koelsch, S., Fritz, T., & Schlaug, G. (2008). Amygdala activity can be modulated by unexpected chord functions during music listening. NeuroReport, 19(18), 1815–1819.

    Article  Google Scholar 

  • Kok, B. E., & Fredrickson, B. L. (2010). Upward spirals of the heart: Autonomic flexibility, as indexed by vagal tone, reciprocally and prospectively predicts positive emotions and social connectedness. Biological Psychology, 85(3), 432–436.

    Article  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews/Neuroscience, 5, 831–843.

    Google Scholar 

  • Leach, S., Cox, H., & Roberts P. (2005). Relief of suffering at the end of life: Report from an Australian project to implement and evaluate a live harp music-thanatology program. Australia Kings Scholarship, Geelong, Australia: St. John of God Hospital and Deakin University School of Nursing, 1–99.

    Google Scholar 

  • Lee, Y., Lei, C., Shih, Y., Zhang, W., Wang, H., Tseng, C.,… & Huang, S. (2011). HRV response of vegetative state patient with music therapy. Conference Proceedings: IEEE, Engineering in Medicine and Biology Society,1701–1704.

    Google Scholar 

  • Levitin, D. J., & Tirovolas, A. K. (2009). Current advances in the cognitive neuroscience of music. Annals of the New York Academy of Sciences, 1156, 211–231.

    Article  Google Scholar 

  • Levy, F. (2012). Mirror neurons, birdsong, and human language: A hypothesis. Frontiers in Psychiatry, 2, 1–7.

    Article  Google Scholar 

  • McCraty, R., Atkinson, M., Rein, G., & Watkins, A. D. (1996). Music enhances the effect of positive emotional states on salivary IgA. Stress Medicine, 12, 167–175.

    Article  Google Scholar 

  • McCraty, R., Atkinson, M., Tiller, W. A., Rein, G., & Watkins, A. D. (1995). The effects of emotions on short-term power spectrum analysis of heart rate variability. American Journal of Cardiology, 76(14), 1089–1093.

    Article  Google Scholar 

  • McCraty, R., Atkinson, M., Tomasino, D., & Bradley, R. (2006). The coherent heart: Heart- Brain interactions, psychophysiological coherence, and, the emergence of system-wide order. Boulder Creek, CA: Institute of HeartMath, Publication 06–022.

    Google Scholar 

  • McCraty, R., Barrios-Choplin, B., Atkinson, M., & Tomasino, D. (1998a). The effects of different types of music on mood, tension, and mental clarity. Alternative Therapies in Health and Medicine, 4, 75–84.

    Google Scholar 

  • McCraty R., Barrio-Choplin, B., Rozman, D., Atkinson, M., & Watkins, A. D. (1998b). The impact of a new emotional self-management program on stress, emotions, heart rate variability, DHEA, and Cortisol. Integrative Physiological and Behavioral Science, 33(2), 151–170.

    Article  Google Scholar 

  • McCraty, R., & Childre, D. (2004). The grateful heart: The psychophysiology of appreciation. In R. A. Emmons & M. E. McCullough (Eds.). The psychology of gratitude. New York, NY: Oxford University Press, 230–256.

    Google Scholar 

  • Mitterschiffthaler, M. T., Fu, C., Dalton, J. A., Andrew, C. M., & Williams, S. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28, 1150–1162.

    Article  Google Scholar 

  • Nakahara, H., Furuya, S., Obata, S., Masuko, T., & Kinoshita, H. (2009). Emotion related changes in heart rate and its variability during performance and perception of music. Annals of the New York Academy of Sciences, 1169, 359–362.

    Article  Google Scholar 

  • Okada, K., Kurita, A., Takase, B., Otsuka, T., Kodani, E., Kusama, Y.,…& Mizuno, K. (2009). Effects of music therapy on autonomic nervous system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with cerebrovascular disease and dementia. International Heart Journal, 50, 95–110.

    Article  Google Scholar 

  • Pena, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: An optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences, 100(20), 11702–11706.

    Article  Google Scholar 

  • Peng, S. M., Koo, M., & Yu, Z. R. (2009). Effects of music and essential oil inhalation on cardiac autonomic balance in healthy individuals. Journal of Alternative and Complementary Medicine, 15(1), 53–57.

    Article  Google Scholar 

  • Porges, S. W. (2009). The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic Journal of Medicine, 76(2), S86–S90.

    Article  Google Scholar 

  • Porges, S. W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, self regulation. New York: W.W. Norton and Company.

    Google Scholar 

  • Porges, S. W., & Furman, S. A. (2011). The early development of the autonomic nervous system provides a neural platform for social behavior: A polyvagal perspective. Infant and Child Development, 20(1), 106–118.

    Article  Google Scholar 

  • Rein G., Atkinson M., & McCraty R. (1995). The physiological and psychological effects of compassion and anger. Journal for the Advancement of Medicine, 8(2), 7–105.

    Google Scholar 

  • Ross, D., Choi, J., & Purves, D. (2007). Musical intervals in speech. Proceedings of the National Academy of Sciences, 104(23), 9852–9857.

    Article  Google Scholar 

  • Scherer, K. R. (1986). Vocal affect expression: A review and a model for future research. Psychological Bulletin, 99(2), 143–165.

    Article  Google Scholar 

  • Sokhadze, E. M. (2007). Effects of music on the recovery of autonomic and electro-cortical activity after stress induced by aversive stimuli. Applied Psychophysiology and Biofeedback, 32, 31–50.

    Article  Google Scholar 

  • Sollier, P. (2005). Listening for wellness: An introduction to the Tomatis method. Walnut Creek, CA: The Mozart Center Press.

    Google Scholar 

  • Stanley, R. (2006). Relationship of physiologic coherence to Gregorian chant, classical, and reiki music. Abstract: Mayo Clinic End of Life Conference, November 2006, Rochester, MN.

    Google Scholar 

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnson, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153.

    Article  Google Scholar 

  • Thomson, W. (2006). Pitch frames as melodic archetypes. Empirical Musicology Review, 1(2), 85–102.

    Google Scholar 

  • Tomatis, A. A. (2005). The ear and the voice. (R. Prada and P. Sollier, Trans.). Lanham, MA: Scarecrow Press.

    Google Scholar 

  • Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants’ and adults’ sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394–402.

    Google Scholar 

  • Trappe, H. (2010). The effects of music on the cardiovascular system and cardiovascular health. Heart, 96, 1868–1871.

    Article  Google Scholar 

  • Tsai, C., Wang, L., Wang, S., Shau, Y., Hsiao, T., & Auhagen, W. (2010). Aggressiveness of the growl-like timbre: Acoustic characteristics, musical implications, and biomechanical mechanisms. Music Perception, 27(3), 209–221.

    Article  Google Scholar 

  • Umemura, M., & Honda, K. (1998). Influence of music on heart rate variability and comfort: A consideration through comparison of music and noise. Journal of Human Ergology, 27, 30–38.

    Google Scholar 

  • Urakawa, K., & Yokoyama, K. (2005). Music can enhance exercise-induced sympathetic dominancy assessed by heart rate variability. Tohoku Journal of Experimental Medicine, 206, 213–218.

    Article  Google Scholar 

  • Vervoort, J., de Voigt, M., & Van den Bergh, W. (2007). The improvement of severe psychomotor and neurological dysfunctions treated with the Tomatis audio-psycho- phonology method measured with EEG brain map and auditory evoked potentials. Journal of Neurotherapy, 11(4), 37–49.

    Article  Google Scholar 

  • White, J. M. (1999). Effects of relaxing music on cardiac autonomic balance and anxiety after acute myocardial infarction. American Journal of Critical Care, 8(4), 220–230.

    Google Scholar 

  • Winborn, M. D. (2011). Deep blues: Human soundscapes for the archetypal journey. Carmel, CA: Fisher King Press.

    Google Scholar 

  • Winkler, I., Kushnerenko, E., Horvath, J., Ceponiene, R., Fellman, V., Huotilainen, M., & Sussman, E. (2003). Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences, 100(20), 11812–11815.

    Article  Google Scholar 

  • Yanagihashi, R., Ohira, M., Kimura, T., & Fujiwara, T. (1997). Physiological and psychological assessment of sound. International Journal of Biometeorology, 40, 157–161.

    Article  Google Scholar 

  • Zentner, M. R., & Kagan, J. (1996). Perception ofmusic by infants. Nature, 383, 29.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2013 Michael J. Stoltzfus, Rebecca Green, and Darla Schumm

About this chapter

Cite this chapter

Stanley, R. (2013). Origins and Applications of Music in Chronic Illness: Role of the Voice, Ancient Chant Scales, and Autonomic Nervous System. In: Stoltzfus, M.J., Green, R., Schumm, D. (eds) Chronic Illness, Spirituality, and Healing. Palgrave Macmillan, New York. https://doi.org/10.1057/9781137348456_6

Download citation

Publish with us

Policies and ethics