Skip to main content

Marine Nitrogen and Climate Change

  • Chapter
  • 323 Accesses

Abstract

The three primary routes for entry of reactive nitrogen into the marine environment are in run-off from the land1, as deposition from the atmosphere2, and via nitrogen-fixing microbes, such as the cyanobacteria, in surface waters3. Run-off from land dominates inputs to most coastal waters, with atmospheric deposition and nitrogen fixation being more important in the open ocean. The world’s rivers are estimated to supply over 20 million tonnes of inorganic nitrogen to estuaries and oceans each year, with three-quarters of this now being from human sources such as fertiliser and sewage4. A further 140 million tonnes of nitrogen enters the marine environment through nitrogen fixation, and around 50 million tonnes is deposited directly from the atmosphere in rain, snow and dust.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroeze, C., Seitzinger, S. P. & Domingues, R. Future trends in worldwide river nitrogen transport and related nitrous oxide emissions: a scenario analysis. The Scientific World Journal 1 Suppl 2, 328–335, doi:10.1100/tsw.2001.279 (2001).

    Article  Google Scholar 

  2. Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897, doi:10.1126/science.1150369 (2008).

    Article  Google Scholar 

  3. Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163–167 (2007).

    Article  Google Scholar 

  4. Seitzinger, S. P. & Kroeze, C. Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles 12, 93–113 (1998).

    Article  Google Scholar 

  5. Zehr, J. P. & Ward, B. B. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Applied and Environmental Microbiology 68, 1015–1024 (2002).

    Article  Google Scholar 

  6. Maranger, R., Caraco, N., Duhamel, J. & Amyot, M. Nitrogen transfer from sea to land via commercial fisheries. Nature Geoscience 1, 111–112 (2008).

    Article  Google Scholar 

  7. Bouwman, A. F. et al. Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Reviews in Fisheries Science 21, 112–156 (2013).

    Article  Google Scholar 

  8. Voss, M. et al. Nitrogen processes in coastal and marine ecosystems. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives 1, 147–176 (2011).

    Article  Google Scholar 

  9. Riddick, S. et al. The global distribution of ammonia emissions from seabird colonies. Atmospheric Environment 55, 319–327 (2012).

    Article  Google Scholar 

  10. Rex, J. F. & Petticrew, E. L. Delivery of marine-derived nutrients to streambeds by Pacific salmon. Nature Geoscience 1, 840–843 (2008).

    Article  Google Scholar 

  11. Schindler, D. E. et al. Pacific salmon and the ecology of coastal ecosystems. Frontiers in Ecology and the Environment 1, 31–37 (2003).

    Article  Google Scholar 

  12. Bange, H. W., Freing, A., Kock, A. & Löscher, C. Marine pathways to nitrous oxide. In Nitrous Oxide and Climate Change, edited by K. Smith, 36–54 (Earthscan, New York, 2010).

    Google Scholar 

  13. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles 11, 235–266 (1997).

    Article  Google Scholar 

  14. Freing, A., Wallace, D. W. & Bange, H. W. Global oceanic production of nitrous oxide. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1245–1255 (2012).

    Article  Google Scholar 

  15. Herbert, R. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews 23, 563–590 (1999).

    Article  Google Scholar 

  16. Bange, H. W. Nitrous oxide and methane in European coastal waters. Estuarine, Coastal and Shelf Science 70, 361–374 (2006).

    Article  Google Scholar 

  17. Cohen, Y. & Gordon, L. I. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep Sea Research 25, 509–524 (1978).

    Article  Google Scholar 

  18. Smith, K., Crutzen, P., Mosier, A. & Winiwarter, W. The global nitrous oxide budget: a reassessment. In Nitrous Oxide and Climate Change, edited by K. Smith, 63–84 (Earthscan, New York, 2010).

    Google Scholar 

  19. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    Article  Google Scholar 

  20. Le Quéré, C., Raupach, M. R., Canadell, J. G. & Marland, G. Trends in the sources and sinks of carbon dioxide. Nature Geoscience 2, 831–836 (2009).

    Article  Google Scholar 

  21. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  Google Scholar 

  22. Sarmiento, J. L. & Le Quéré, C. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 (1996).

    Article  Google Scholar 

  23. Le Quéré, C. et al. Saturation of the southern ocean CO2 sink due to recent climate change. Science (New York, NY) 316, 1735–1738 (2007).

    Article  Google Scholar 

  24. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104, 18866–18870 (2007).

    Article  Google Scholar 

  25. Fung, I. Y., Doney, S. C., Lindsay, K. & John, J. Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America 102, 11201–11206 (2005).

    Article  Google Scholar 

  26. Krishnamurthy, A., Moore, J. K., Zender, C. S. & Luo, C. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. Journal of Geophysical Research: Biogeosciences (2005–2012) 112 (2007).

    Google Scholar 

  27. Galloway, J. N. The global nitrogen cycle: past, present and future. Science in China. Series C, Life sciences/Chinese Academy of Sciences 48 Suppl 2, 669–678, doi:10.1007/BF03187108 (2005).

    Google Scholar 

  28. Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nature Geoscience 1, 430–437, doi:10.1038/ngeo230 (2008).

    Article  Google Scholar 

  29. Keeling, C., Whorf, T., Wahlen, M. & Plicht, J. v. d. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    Article  Google Scholar 

  30. Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences of the United States of America 106, 20602–20609 (2009).

    Article  Google Scholar 

  31. Doney, S. C. et al. Climate change impacts on marine ecosystems. Marine Science 4, 11–37 (2012).

    Article  Google Scholar 

  32. Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 1980–1996 (2011).

    Article  Google Scholar 

  33. Codispoti, L. et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Scientia Marina 65, 85–105 (2001).

    Article  Google Scholar 

  34. Naqvi, S. et al. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408, 346–349 (2000).

    Article  Google Scholar 

  35. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Marine Science 2 (2010).

    Google Scholar 

  36. Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES Journal of Marine Science: Journal du Conseil 66, 1528–1537 (2009).

    Article  Google Scholar 

  37. Voss, M. et al. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20130121 (2013).

    Article  Google Scholar 

  38. Howarth, R. et al. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9, 18–26 (2011).

    Article  Google Scholar 

  39. Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1, 27–37 (2009).

    Article  Google Scholar 

  40. Howarth, R. W., Swaney, D. P., Butler, T. J. & Marino, R. Rapid communication: climatic control on eutrophication of the Hudson River Estuary. Ecosystems 3, 210–215 (2000).

    Article  Google Scholar 

  41. Kroeze, C. & Seitzinger, S. P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutrient Cycling in Agroecosystems 52, 195–212 (1998).

    Article  Google Scholar 

  42. Boyd, P. W. & Doney, S. C. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29, 53–51–53–54 (2002).

    Google Scholar 

  43. Beman, J. M. et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108, 208–213 (2011).

    Article  Google Scholar 

  44. Hutchins, D. A., Mulholland, M. R. & Fu, F. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22, 128–145 (2009).

    Article  Google Scholar 

  45. Howarth, R. W. Nutrient limitation of net primary production in marine ecosystems. Annual Review of Ecology and Systematics 19, 89–110 (1988).

    Article  Google Scholar 

  46. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  47. Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., Aiken, J. & Falkowski, P. G. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383, 508–511 (1996).

    Article  Google Scholar 

  48. Conley, D. J. et al. Controlling eutrophication: nitrogen and phosphorus. Science 323, 1014–1015 (2009).

    Article  Google Scholar 

  49. Rabalais, N. N., Turner, R. E. & Wiseman Jr, W. J. Gulf of Mexico hypoxia, AKA “The Dead Zone”. Annual Review of Ecology and Systematics 33, 235–263 (2002).

    Article  Google Scholar 

  50. Dodds, W. K. Nutrients and the “Dead Zone”: the link between nutrient ratios and dissolved oxygen in the northern Gulf of Mexico. Frontiers in Ecology and the Environment 4, 211–217 (2006).

    Article  Google Scholar 

  51. Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Hypoxia in the Gulf of Mexico. Journal of Environmental Quality 30, 320–329 (2001).

    Article  Google Scholar 

  52. Burkart, M. R. & James, D. E. Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. Journal of Environmental Quality 28, 850–859 (1999).

    Article  Google Scholar 

  53. Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  Google Scholar 

  54. Diaz, R. J. Overview of hypoxia around the world. Journal of Environmental Quality 30, 275–281 (2001).

    Article  Google Scholar 

  55. Craig, J. K. et al. Ecological effects of hypoxia on fish, sea turtles, and marine mammals in the northwestern Gulf of Mexico. In Coastal Hypoxia: Consequences for Living Resources and Ecosystems, edited by N. Rabalais et al., 58, 269–291 (AGU Coastal and Estuarine Studies Series, USA, 2001).

    Chapter  Google Scholar 

  56. Burkholder, J. M. & Marshall, H. G. Toxigenic Pfiesteria species — updates on biology, ecology, toxins, and impacts. Harmful Algae 14, 196–230 (2012).

    Article  Google Scholar 

  57. Zingone, A. & Oksfeldt Enevoldsen, H. The diversity of harmful algal blooms: a challenge for science and management. Ocean & Coastal Management 43, 725–748 (2000).

    Article  Google Scholar 

  58. Van Dolah, F. M. Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives 108, 133 (2000).

    Article  Google Scholar 

  59. Dybas, C. L. Harmful algal blooms: biosensors provide new ways of detecting and monitoring growing threat in coastal waters. BioScience 53, 918–923 (2003).

    Article  Google Scholar 

  60. Grant, K. S., Burbacher, T. M., Faustman, E. M. & Gratttan, L. Domoic acid: neurobehavioral consequences of exposure to a prevalent marine biotoxin. Neurotoxicology and Teratology 32, 132–141 (2010).

    Article  Google Scholar 

  61. Graham, J. L., Loftin, K. A., Meyer, M. T. & Ziegler, A. C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environmental Science & Technology 44, 7361–7368 (2010).

    Article  Google Scholar 

  62. Fleming, L. E., Backer, L. C. & Baden, D. G. Overview of aerosolized Florida red tide toxins: exposures and effects. Environmental Health Perspectives 113, 618–620 (2005).

    Article  Google Scholar 

  63. Fleming, L. E. et al. Review of Florida red tide and human health effects. Harmful Algae 10, 224–233 (2011).

    Article  Google Scholar 

  64. Landsberg, J., Flewelling, L. & Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: decadal advancements. Harmful Algae 8, 598–607 (2009).

    Article  Google Scholar 

  65. Todd, E. C. Domoic acid and amnesic shellfish poisoning: a review. Journal of Food Protection 56, 69–83 (1993).

    Google Scholar 

  66. Perl, T. M. et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New England Journal of Medicine 322, 1775–1780 (1990).

    Article  Google Scholar 

  67. Bates, S. et al. Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Canadian Journal of Fisheries and Aquatic Sciences 46, 1203–1215 (1989).

    Article  Google Scholar 

  68. Costa, L. G., Giordano, G. & Faustman, E. M. Domoic acid as a developmental neurotoxin. Neurotoxicology 31, 409–423 (2010).

    Article  Google Scholar 

  69. Lelong, A., Hégaret, H., Soudant, P. & Bates, S. S. Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51, 168–216 (2012).

    Article  Google Scholar 

  70. Lloyd, J. K., Duchin, J. S., Borchert, J., Quintana, H. F. & Robertson, A. Diarrhetic Shellfish Poisoning, Washington, USA, 2011. Emerging Infectious Diseases 19, 1314 (2013).

    Article  Google Scholar 

  71. Watkins, S. M., Reich, A., Fleming, L. E. & Hammond, R. Neurotoxic shellfish poisoning. Marine Drugs 6, 431–455 (2008).

    Article  Google Scholar 

  72. Etheridge, S. M. Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon: Official Journal of the International Society on Toxinology 56, 108–122 (2010).

    Article  Google Scholar 

  73. McGillicuddy Jr, D., Townsend, D. W., Keafer, B. A., Thomas, M. & Anderson, D. M. Georges Bank: a leaky incubator of Alexandrium fundyense blooms. Deep Sea Research Part II: Topical Studies in Oceanography 103, 163–173 (2012).

    Article  Google Scholar 

  74. Faber, S. Saxitoxin and the induction of paralytic shellfish poisoning. Journal of Young Investigators 23, 1–7 (2012).

    Google Scholar 

  75. Anderson, D. M., Hoagland, P., Kaoru, Y. & White, A. W. Estimated annual economic impacts from harmful algal blooms (HABs) in the United States. (DTIC Document, 2000).

    Book  Google Scholar 

  76. Paerl, H. W. & Scott, J. T. Throwing fuel on the fire: synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science & Technology 44, 7756–7758, doi:10.1021/es102665e (2010).

    Article  Google Scholar 

  77. Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfeld comfort zone. Chinese Journal of Oceanology and Limnology 29, 724–738 (2011).

    Article  Google Scholar 

  78. Lewitus, A. J. et al. Harmful algal blooms along the North American west coast region: history, trends, causes, and impacts. Harmful Algae 19, 133–159 (2012).

    Article  Google Scholar 

  79. Johnson, P. T. et al. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecological Applications 20, 16–29 (2010).

    Article  Google Scholar 

  80. Lee, C.-K., Park, T.-G., Park, Y.-T. & Lim, W. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30, S3–S14 (2013).

    Article  Google Scholar 

  81. Hogan, D. M. et al. Estimating the cumulative ecological effect of local scale landscape changes in South Florida. Environmental Management 49, 502–515 (2012).

    Article  Google Scholar 

  82. Beusen, A., Slomp, C. & Bouwman, A. Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environmental Research Letters 8, 034035 (2013).

    Article  Google Scholar 

  83. Barnes, B. B. et al. Use of Landsat data to track historical water quality changes in Florida Keys marine environments. Remote Sensing of Environment 140, 485–496 (2014).

    Article  Google Scholar 

  84. Campbell, L., Henrichs, D. W., Olson, R. J. & Sosik, H. M. Continuous automated imaging-in-fow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico. Environmental Science and Pollution Research 20, 6896–6902 (2013).

    Article  Google Scholar 

  85. Siswanto, E., Ishizaka, J., Tripathy, S. C. & Miyamura, K. Detection of harmful algal blooms of Karenia mikimotoi using MODIS measurements: a case study of Seto-Inland Sea, Japan. Remote Sensing of Environment 129, 185–196 (2013).

    Article  Google Scholar 

  86. Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment 409, 1739–1745 (2011).

    Article  Google Scholar 

  87. Chen, N. et al. Nutrient enrichment and N:P ratio decline in a coastal bay-river system in southeast China: the need for a dual nutrient (N and P) management strategy. Ocean & Coastal Management 81, 7–13 (2013).

    Article  Google Scholar 

  88. Tomer, M., Crumpton, W., Bingner, R., Kostel, J. & James, D. Estimating nitrate load reductions from placing constructed wetlands in a HUC-12 watershed using LiDAR data. Ecological Engineering 56, 69–78 (2013).

    Article  Google Scholar 

  89. Glibert, P. M. et al. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Global Change Biology 20, 3845–3858 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2015 Dave Reay

About this chapter

Cite this chapter

Reay, D. (2015). Marine Nitrogen and Climate Change. In: Nitrogen and Climate Change. Palgrave Macmillan, London. https://doi.org/10.1057/9781137286963_9

Download citation

Publish with us

Policies and ethics