Skip to main content

Part of the book series: Financial Engineering Explained ((FEX))

  • 1201 Accesses

Abstract

In this chapter we extend the basic semidiscretizations introduced in Chapter 3 to the general convection-diffusion-reaction equation combined with the various boundary conditions from Chapter 2. We then discuss nonuniform spatial grids and consider the numerical treatment of nonsmooth initial functions, which are omnipresent in financial applications. The chapter concludes with a useful mixed central/upwind discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More precisely phrased: nonnegativity preserving.

Bibliography

  1. A. Berman & R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, 1994.

    Google Scholar 

  2. Y. d'Halluin, P. A. Forsyth & K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal. 25 (2005) 87–112.

    Article  Google Scholar 

  3. K. J. in 't Hout & K. Volders, Stability and convergence analysis of discretizations of the Black–Scholes PDE with the linear boundary condition, IMA J. Numer. Anal. 34 (2014) 296–325.

    Article  Google Scholar 

  4. W. Hundsdorfer & J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, 2003.

    Google Scholar 

  5. H. O. Kreiss, V. Thomée & O. Widlund, Smoothing of initial data and rates of convergence for parabolic difference equations, Comm. Pure Appl. Math. 23 (1970) 241–259.

    Article  Google Scholar 

  6. D. M. Pooley, P. A. Forsyth & K. R. Vetzal, Numerical convergence properties of option pricing PDEs with uncertain volatility, IMA J. Numer. Anal. 23 (2003) 241–267.

    Article  Google Scholar 

  7. D. M. Pooley, K. R. Vetzal & P. A. Forsyth, Convergence remedies for non-smooth payoffs in option pricing, J. Comp. Finan. 6 (2003) 25–40.

    Article  Google Scholar 

  8. D. Tavella & C. Randall, Pricing Financial Instruments, Wiley, 2000.

    Google Scholar 

  9. A. E. P. Veldman & K. Rinzema, Playing with nonuniform grids, J. Eng. Math. 26 (1992) 119–130.

    Article  Google Scholar 

  10. H. Windcliff, P. A. Forsyth & K. R. Vetzal, Analysis of the stability of the linear boundary condition for the Black–Scholes equation, J. Comp. Finan. 8 (2004) 65–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

in ’t Hout, K. (2017). Spatial Discretization II. In: Numerical Partial Differential Equations in Finance Explained. Financial Engineering Explained. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-43569-9_4

Download citation

  • DOI: https://doi.org/10.1057/978-1-137-43569-9_4

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-137-43568-2

  • Online ISBN: 978-1-137-43569-9

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics