Skip to main content

Serial List Retention by Non-Human Primates: Complexity and Cognitive Continuity

  • Chapter
The Complex Mind

Abstract

One implication of such quotations is that understanding complex issues is enhanced by preliminary knowledge of simpler component processes. In the present instance, research on memory organisation in animals is encouraged as a tactic to allow insights into integrative operations underlying cognitive processes in other species. It should be noted that here the appeal to simplicity derives, not from reductionist rationale, but from the prospect that animal research provides advantages in experimental control and precision of measurement. In his comparative treatments, Charles Darwin (1859, 1988) used the terms ‘organs’ and ‘instincts’ when referring to anatomy and behaviour, respectively. He stated that: ‘I can see no difficulty in natural selection preserving and continually accumulating variations of instinct to any extent that may be profitable. It is thus, that I believe, that all the most complex and wonderful instincts have originated.’ Accordingly, it seems just as appropriate to seek animal analogues of complex behaviours as to study the evolution of morphology.

Increasingly, people seem to misinterpret complexity as sophistication, which is baffling — the incomprehensible should cause suspicion rather than admiration. Possibly this trend results from a mistaken belief that using a somewhat mysterious device confers an aura of power on the user.

Niklaus Wirth, computer scientist; inventor of Pascal language

Out of intense complexities, intense simplicities emerge.

Winston Churchill

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biro, D. and Matsuzawa, T. (1999). Numerical ordering in a chimpanzee (Pan troglodytes): Planning, executing and monitoring. Journal of Comparative Psychology, 113: 178–85.

    Article  Google Scholar 

  • Bonard, S. and Neider, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proceedings of the National Academy of Science, USA, doi: 10.1073/pnas/0909180107.

  • Brannon, E. M., Cantlon, J. F. and Terrace, H. M. (2006). The role of reference points in ordinal numerical comparisons by rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes. 32: 124–30.

    Google Scholar 

  • Bryant, P. E. and Trabasso, T. R. (1971). Transitive inferences and memory in young children. Nature, 232: 456–8.

    Article  Google Scholar 

  • Butti, C., Sherwood, C. C., Hakeem, A. Y., Allman, J. M. and Hof, P. R. (2009). Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans. Journal of Comparative Neurology, 10 July 2009, 515(2): 243–59.

    Article  Google Scholar 

  • Buxhoeveden, D. P., Switala, A. E., Roy, E., Litaker, M. and Casanova, M. F. (2001). Morphological differences between minicolumns in human and nonhuman primate cortex. American Journal of Physical Anthropology 11: 361–71.

    Article  Google Scholar 

  • Buxhoeveden, D. P. and Casanova, M. F. (2002). The minicolumn and evolution of the brain. Brain, Behavior and Evolution, 60: 125–51.

    Article  Google Scholar 

  • D’Amato, M. R. and Colombo, M. (1988). Representation of serial order in monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes, 14: 131–9.

    Google Scholar 

  • D’Amato, M. R., and Colombo, M. (1990). The symbolic distance effect in monkeys (Cebus apella). Animal Learning & Behavior, 18: 133–40.

    Article  Google Scholar 

  • Darwin, C. (1859). The origin of species. London: John Murray; New York: Viking Penguin (1988 reprint).

    Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.

    Google Scholar 

  • Dehaene, S. and Changeux, J-P. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5: 390–407.

    Article  Google Scholar 

  • Emery, N. J. and Clayton, N. S. (2004). Comparing the complex cognition of birds and primates. In L. J. Rodgers and G. Kaplan (eds), Comparative vertebrate cognition: Are primates superior to non-primates. New York: Kluwer/Plenum, pp. 3–48.

    Chapter  Google Scholar 

  • Gillan, D. J. (1981). Reasoning in the chimpanzee: II. Transitive inference. Journal of Experimental Psychology: Animal Behavior Processes, 7: 150–64.

    Google Scholar 

  • Hakeem, A. Y., Sherwood C. C., Bonar C. J., Butti, C., Hof, P. R. and Allman, J. M. (2009). Von Economo neurons in the elephant brain. Anatomical Record (Hoboken) 292, 242–8.

    Article  Google Scholar 

  • Inoue, S. and Matsuzawa, T. (2009). Acquisition and memory of sequence order in young and adult chimpanzees (Pan troglodytes). Animal Cognition, 12: 159–69.

    Article  Google Scholar 

  • Kornell, N., Son, L. K. and Terrace, H. S. (2007). Transfer of metacognitive skills and hint seeking in monkeys. Psychological Science, 18: 64.

    Article  Google Scholar 

  • McGonigle, B. O. and Chalmers, M. (1977). Are monkeys logical? Nature, 267: 694–6.

    Article  Google Scholar 

  • McGonigle, B. and Chalmers, M. (2008). Putting Descartes before the horse (again). Behavioral and Brain Sciences, 31: 142–3.

    Article  Google Scholar 

  • Neider, A. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Science, USA, 101: 7457–62.

    Article  Google Scholar 

  • Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin. J. M. and Hof, P. R. (1999). A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Science, USA, 96: 5268–73.

    Article  Google Scholar 

  • Opstal, F. V., Fias, W., Peigneux, P. and Verguts, T. (2009). The neural representation of extensively trained ordered sequences. NeuroImage, 47: 367–75.

    Article  Google Scholar 

  • Penn, D. C., Holyoak, K. J. and Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31: 109–30.

    Google Scholar 

  • Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. Proceedings of the National Academy of Sciences, USA, 104: 13861–7.

    Article  Google Scholar 

  • Rapp, P. R., Kansky, M. T. and Eichenbaum, H. (1996). Learning and memory for hierarchical relationships in the monkey: Effects of aging. Behavioral Neuroscience, 110: 887–97.

    Article  Google Scholar 

  • Roitman, J. D., Brannon, E. M. and Platt, M. L. (2007). Monotonic coding of numerosity in Macaque lateral intraparietal area. Public Library of Science, Biology, 5(8): e208.

    Google Scholar 

  • Sherwood, C. C., Rilling, J. K., Holloway, R. I. and Hof, P. R. (2009). Evolution of the brain in humans — specializations in a comparative perspective. In M. D. Binder, N. Hirokawa, U. Windhorst, M. C. Hirsch (eds), Encyclopedia of Neuroscience, Part 5, New York: Springer-Verlag, pp. 1334–8.

    Chapter  Google Scholar 

  • Sherwood, C. C., Subiaul, F. and Zawidzki, T. W. (2008). A natural history of the human mind: Tracing evolutionary changes in brain and cognition. Journal of Anatomy, 212: 426–54.

    Article  Google Scholar 

  • Shettleworth, S. J. (2008). The evolution of comparative cognition: Is the snark still a boojum? Behavioural Processes, 80: 210–17.

    Article  Google Scholar 

  • Terrace, H. S. (1993). The phylogeny and ontogeny of serial memory: List learning by pigeons and monkeys. Psychological Science, 4: 162–9.

    Article  Google Scholar 

  • Terrace, H. S. (2005). The simultaneous chain: A new approach to serial learning. Trends in Cognitive Sciences, 9: 202–10.

    Article  Google Scholar 

  • Terrace, H. S. and McGonigle, B. M. (1994). Memory and representation of serial order by children, monkeys and pigeons. Current Directions in Psychological Science, 3: 180–9.

    Article  Google Scholar 

  • Terrace, H. S., Son, L. K. and Brannon, E. M. (2003). Serial expertise of rhesus macaques. Psychological Science, 14: 66–73.

    Article  Google Scholar 

  • Treichler, F. R. and Raghanti, M. A. (2010). Serial list combination by monkeys (Macaca mulatta): Test cues and linking. Animal Cognition, 13: 121–32.

    Article  Google Scholar 

  • Treichler, F. R., Raghanti, M. A. and Van Tilburg, D. (2003). Linking of serially ordered lists by macaque monkeys: List position influences. Journal of Experimental Psychology: Animal Behavior Processes, 29, 211–21.

    Google Scholar 

  • Treichler, F. R., Raghanti, M. A. and Van Tilburg, D. (2007). Serial list linking by macaque monkeys: List property limitations. Journal of Comparative Psychology, 121: 250–9.

    Article  Google Scholar 

  • Treichler, F. R. and Van Tilburg, D. (1996). Concurrent conditional discrimination tests of transitive inference by macaque monkeys: List linking. Journal of Experimental Psychology: Animal Behavior Processes, 22: 105–17.

    Google Scholar 

  • Vasconcelos, M. (2008). Transitive inference in non-human animals: An empirical and theoretical analysis. Behavioural Processes, 78: 313–34.

    Article  Google Scholar 

  • Verguts, T. and Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16: 1493–1504.

    Article  Google Scholar 

  • Von Fersen, L., Wynne, C. D. L., Delius, J. D. and Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17: 334–41.

    Google Scholar 

  • Wynne, C. D. L. (1998). A minimal model of transitive inference. In C. D. L. Wynne and J. E. R. Staddon (eds). Models for Action. Hillsdale, NJ: Erlbaum, pp. 296–307.

    Google Scholar 

  • Wynne, C. D. L. (2007). What are animals? Why anthropomorphism is still not a scientific approach to behavior. Comparative Cognition and Behavior Reviews, 2: 125–35.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2012 F. Robert Treichler

About this chapter

Cite this chapter

Treichler, F.R. (2012). Serial List Retention by Non-Human Primates: Complexity and Cognitive Continuity. In: McFarland, D., Stenning, K., McGonigle-Chalmers, M. (eds) The Complex Mind. Palgrave Macmillan, London. https://doi.org/10.1057/9780230354456_2

Download citation

Publish with us

Policies and ethics