Semin Reprod Med 2007; 25(5): 360-367
DOI: 10.1055/s-2007-984742
Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Pleiotropic Effects of Excessive Luteinizing Hormone Secretion in Transgenic Mice

Amelia L.M Sutton1 , Ruth A. Keri1 , 2
  • 1Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
  • 2Division of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
Further Information

Publication History

Publication Date:
20 August 2007 (online)

ABSTRACT

Luteinizing hormone (LH) is member of the glycoprotein hormone family of gonadotropins, which also includes the highly related human chorionic gonadotropin and follicle-stimulating hormone. The necessity of these factors for sustaining human fertility has been known for decades. In addition, elevated serum levels of LH have been associated with polycystic ovarian syndrome, suggesting that the appropriate balance of LH is critical for maintaining reproductive function. To dissect the biological consequences of aberrant LH signaling in vivo, several genetically engineered mouse models have been developed that overexpress LH or have increased LH signaling. These models underscore the importance of tightly regulated LH levels for normal reproductive function, and reveal novel roles for LH and gonadal hormones in tumorigenesis of multiple tissues, including the ovary, mammary gland, and pituitary. Thus, mice with altered LH signaling provide valuable tools in understanding normal reproduction and various pathological conditions.

REFERENCES

  • 1 Stenman U H, Tiitinen A, Alfthan H, Valmu L. The classification, functions and clinical use of different isoforms of HCG.  Hum Reprod Update. 2006;  12 769-784
  • 2 Richards J S. New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells.  Mol Endocrinol. 2001;  15 209-218
  • 3 Risma K A, Clay C M, Nett T M, Wagner T, Yun J, Nilson J H. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors.  Proc Natl Acad Sci USA. 1995;  92 1322-1326
  • 4 Fares F A, Suganuma N, Nishimori K, LaPolt P S, Hsueh A J, Boime I. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin beta subunit to the follitropin beta subunit.  Proc Natl Acad Sci USA. 1992;  89 4304-4308
  • 5 Rulli S B, Kuorelahti A, Karaer O, Pelliniemi L J, Poutanen M, Huhtaniemi I. Reproductive disturbances, pituitary lactotrope adenomas, and mammary gland tumors in transgenic female mice producing high levels of human chorionic gonadotropin.  Endocrinology. 2002;  143 4084-4095
  • 6 Rulli S B, Ahtiainen P, Makela S, Toppari J, Poutanen M, Huhtaniemi I. Elevated steroidogenesis, defective reproductive organs, and infertility in transgenic male mice overexpressing human chorionic gonadotropin.  Endocrinology. 2003;  144 4980-4990
  • 7 Matzuk M M, DeMayo F J, Hadsell L A, Kumar T R. Overexpression of human chorionic gonadotropin causes multiple reproductive defects in transgenic mice.  Biol Reprod. 2003;  69 338-346
  • 8 Lania A, Gangi E, Romoli R et al.. Impaired estrogen-induced negative feedback on gonadotropin secretion in patients with gonadotropin-secreting and nonfunctioning pituitary adenomas.  Eur J Clin Invest. 2002;  32 335-340
  • 9 Morales A J, Laughlin G A, Butzow T, Maheshwari H, Baumann G, Yen S S. Insulin, somatotropic, and luteinizing hormone axes in lean and obese women with polycystic ovary syndrome: common and distinct features.  J Clin Endocrinol Metab. 1996;  81 2854-2864
  • 10 Couse J F, Yates M M, Walker V R, Korach K S. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta.  Mol Endocrinol. 2003;  17 1039-1053
  • 11 Fisher C R, Graves K H, Parlow A F, Simpson E R. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene.  Proc Natl Acad Sci USA. 1998;  95 6965-6970
  • 12 Britt K L, Drummond A E, Cox V A et al.. An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene.  Endocrinology. 2000;  141 2614-2623
  • 13 Meehan T P, Harmon B G, Overcast M E et al.. Gonadal defects and hormonal alterations in transgenic mice expressing a single chain human chorionic gonadotropin-lutropin receptor complex.  J Mol Endocrinol. 2005;  34 489-503
  • 14 Risma K A, Hirshfield A N, Nilson J H. Elevated luteinizing hormone in prepubertal transgenic mice causes hyperandrogenemia, precocious puberty, and substantial ovarian pathology.  Endocrinology. 1997;  138 3540-3547
  • 15 Flaws J A, Abbud R, Mann R J, Nilson J H, Hirshfield A N. Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary.  Biol Reprod. 1997;  57 1233-1237
  • 16 Mann R J, Keri R A, Nilson J H. Consequences of elevated luteinizing hormone on diverse physiological systems: use of the LHbetaCTP transgenic mouse as a model of ovarian hyperstimulation-induced pathophysiology.  Recent Prog Horm Res. 2003;  58 343-375
  • 17 Hodges C A, Ilagan A, Jennings D, Keri R, Nilson J, Hunt P A. Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation.  Hum Reprod. 2002;  17 1171-1180
  • 18 Mann R J, Keri R A, Nilson J H. Transgenic mice with chronically elevated luteinizing hormone are infertile due to anovulation, defects in uterine receptivity, and midgestation pregnancy failure.  Endocrinology. 1999;  140 2592-2601
  • 19 Giudice L C. Endometrium in PCOS: Implantation and predisposition to endocrine CA.  Best Pract Res Clin Endocrinol Metab. 2006;  20 235-244
  • 20 Couse J F, Yates M M, Sanford R, Nyska A, Nilson J H, Korach K S. Formation of cystic ovarian follicles associated with elevated luteinizing hormone requires estrogen receptor-beta.  Endocrinology. 2004;  145 4693-4702
  • 21 Keri R A, Lozada K L, Abdul-Karim F W, Nadeau J H, Nilson J H. Luteinizing hormone induction of ovarian tumors: oligogenic differences between mouse strains dictates tumor disposition.  Proc Natl Acad Sci USA. 2000;  97 383-387
  • 22 Schomberg D W, Couse J F, Mukherjee A et al.. Targeted disruption of the estrogen receptor-alpha gene in female mice: characterization of ovarian responses and phenotype in the adult.  Endocrinology. 1999;  140 2733-2744
  • 23 Couse J F, Bunch D O, Lindzey J, Schomberg D W, Korach K S. Prevention of the polycystic ovarian phenotype and characterization of ovulatory capacity in the estrogen receptor-alpha knockout mouse.  Endocrinology. 1999;  140 5855-5865
  • 24 Couse J F, Hewitt S C, Bunch D O et al.. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta.  Science. 1999;  286 2328-2331
  • 25 Owens G E, Keri R A, Nilson J H. Ovulatory surges of human CG prevent hormone-induced granulosa cell tumor formation leading to the identification of tumor-associated changes in the transcriptome.  Mol Endocrinol. 2002;  16 1230-1242
  • 26 Burger H G. The endocrinology of the menopause.  Maturitas. 1996;  23 129-136
  • 27 Hsieh M, Mulders S M, Friis R R, Dharmarajan A, Richards J S. Expression and localization of secreted frizzled-related protein-4 in the rodent ovary: evidence for selective up-regulation in luteinized granulosa cells.  Endocrinology. 2003;  144 4597-4606
  • 28 Kero J, Poutanen M, Zhang F P et al.. Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex.  J Clin Invest. 2000;  105 633-641
  • 29 Milliken E L, Ameduri R K, Landis M D, Behrooz A, Abdul-Karim F W, Keri R A. Ovarian hyperstimulation by LH leads to mammary gland hyperplasia and cancer predisposition in transgenic mice.  Endocrinology. 2002;  143 3671-3680
  • 30 Milliken E L, Zhang X, Flask C, Duerk J L, MacDonald P N, Keri R A. EB1089, a vitamin D receptor agonist, reduces proliferation and decreases tumor growth rate in a mouse model of hormone-induced mammary cancer.  Cancer Lett. 2005;  229 205-215
  • 31 Berger U, Wilson P, McClelland R A et al.. Immunocytochemical detection of 1,25-dihydroxyvitamin D3 receptor in breast cancer.  Cancer Res. 1987;  47 6793-6799
  • 32 Chouvet C, Vicard E, Devonec M, Saez S. 1,25-Dihydroxyvitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20).  J Steroid Biochem. 1986;  24 373-376
  • 33 Simboli-Campbell M, Narvaez C J, Tenniswood M, Welsh J. 1,25-Dihydroxyvitamin D3 induces morphological and biochemical markers of apoptosis in MCF-7 breast cancer cells.  J Steroid Biochem Mol Biol. 1996;  58 367-376
  • 34 Zinser G, Packman K, Welsh J. Vitamin D(3) receptor ablation alters mammary gland morphogenesis.  Development. 2002;  129 3067-3076
  • 35 Mohammad H P, Abbud R A, Parlow A F, Lewin J S, Nilson J H. Targeted overexpression of luteinizing hormone causes ovary-dependent functional adenomas restricted to cells of the Pit-1 lineage.  Endocrinology. 2003;  144 4626-4636
  • 36 Mohammad H P, Seachrist D D, Quirk C C, Nilson J H. Reexpression of p8 contributes to tumorigenic properties of pituitary cells and appears in a subset of prolactinomas in transgenic mice that hypersecrete luteinizing hormone.  Mol Endocrinol. 2004;  18 2583-2593
  • 37 Kero J T, Savontaus E, Mikola M et al.. Obesity in transgenic female mice with constitutively elevated luteinizing hormone secretion.  Am J Physiol Endocrinol Metab. 2003;  285 E812-E818
  • 38 Shibli-Rahhal A, Van Beek M, Schlechte J A. Cushing's syndrome.  Clin Dermatol. 2006;  24 260-265
  • 39 Chang R J. A practical approach to the diagnosis of polycystic ovary syndrome.  Am J Obstet Gynecol. 2004;  191 713-717
  • 40 Ahtiainen P, Rulli S B, Shariatmadari R et al.. Fetal but not adult Leydig cells are susceptible to adenoma formation in response to persistently high hCG level: a study on hCG overexpressing transgenic mice.  Oncogene. 2005;  24 7301-7309
  • 41 Liu G, Duranteau L, Carel J C, Monroe J, Doyle D A, Shenker A. Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor.  N Engl J Med. 1999;  341 1731-1736
  • 42 Richter-Unruh A, Wessels H T, Menken U et al.. Male LH-independent sexual precocity in a 3.5-year-old boy caused by a somatic activating mutation of the LH receptor in a Leydig cell tumor.  J Clin Endocrinol Metab. 2002;  87 1052-1056
  • 43 Yarram S J, Perry M J, Christopher T J et al.. Luteinizing hormone receptor knockout (LuRKO) mice and transgenic human chorionic gonadotropin (hCG)-overexpressing mice (hCG alphabeta + ) have bone phenotypes.  Endocrinology. 2003;  144 3555-3564
  • 44 Riggs B L, Khosla S, Melton III L J. Sex steroids and the construction and conservation of the adult skeleton.  Endocr Rev. 2002;  23 279-302
  • 45 Lubahn D B, Moyer J S, Golding T S, Couse J F, Korach K S, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene.  Proc Natl Acad Sci USA. 1993;  90 11162-11166

Ruth A KeriPh.D. 

Department of Pharmacology, Case Western Reserve University, School of Medicine

10900 Euclid Avenue, Cleveland, OH 44106-4965

Email: keri@case.edu

    >