Sleep Breath 2004; 8(1): 31-41
DOI: 10.1055/s-2004-822851
ORIGINAL ARTICLE

Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Plasma Adenosine during Investigation of Hypoxic Ventilatory Response

Dirk Drumm1 , Markus Hoefer1 , Janos Juhász1 , Éva Huszár2 , Gerhard W. Sybrecht1
  • 1Innere Medizin V, Universitätskliniken des Saarlandes, Homburg/Saar, Germany
  • 2Department of Pathophysiology, Korànyi Institute of Pulmonology, Budapest, Hungary
Further Information

Publication History

Publication Date:
17 March 2004 (online)

Adenosine, an endogenous nucleoside, is released by hypoxic tissue, causes vasodilation, and influences ventilation. Its effects are mediated by P1-purinoceptors. We examined to what extent the plasma adenosine concentration in the peripheral venous blood correlates with hypoxic ventilatory response (HVR) and ventilatory drive P0.1 to find out whether endogenously formed adenosine has an influence on the individual ventilatory drive under hypoxic conditions. While investigating the HVR of 14 healthy subjects, the ventilatory drive P0.1 was measured with the shutter of a spirometer. Determination of the ventilatory drive P0.1(RA) started under room air conditions (21% O2) and then inspiratory gas was changed to a hypoxic mixture of 10% O2 in N2 to determine P0.1(Hyp). At the time of the P0.1 measurements, two blood samples were taken to determine the adenosine concentrations. After removal of cellular components and proteins, samples were analyzed by high-pressure liquid chromatography (HPLC). Both adenosine concentrations in plasma under room air (r = 0.59, p < 0.05) and adenosine concentrations under hypoxia (r = 0.75, p < 0.01) correlated significantly with the ventilatory drive P0.1. In addition, plasma adenosine concentrations during hypoxic conditions showed a significant correlation with HVR on the 0.01 level (r = 0.71, p < 0.01). The results indicate a possible role of endogenous adenosine in the regulation of breathing in humans. We assume that endogenous adenosine influences the HVR and the ventilatory drive, probably by modulating the carotid body chemoreceptor response to hypoxia.

REFERENCES

  • 1 Möser G H, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood.  Am J Physiol. 1989;  256(4 Pt 1) C799-C806
  • 2 Kobayashi S, Zimmermann H, Millhorn D E. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.  J Neurochem. 2000;  74 621-632
  • 3 Huszár É, Barát E, Kollai M. Isocratic high-performance liquid chromatographic determination of plasma adenosine.  Chromatographia. 1996;  42 318-322
  • 4 Jonzon B. Adenosine Mechanisms in the Central Nervous System [doctoral thesis]. Stockholm, Sweden; Karolinska Institute 1984: 10-21
  • 5 Bryan P T, Marshall J M. Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors.  J Physiol. 1999;  514 151-162
  • 6 Coney A M, Marshall J M. Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia.  J Physiol. 1998;  509 507-518
  • 7 Georgopoulos D, Holthby S G, Berezanski D, Anthonisen N R. Aminophylline effects on ventilatory response to hypoxia and hyperoxia in normal adults.  J Appl Physiol. 1989;  67 1150-1156
  • 8 Gleeson K, Zwillich C W. Adenosine infusion and periodic breathing during sleep.  J Appl Physiol. 1992;  72 1004-1009
  • 9 Reid P G, Watt A H, Penny W J, Newby A C, Smith A P, Routledge P A. Plasma adenosine concentrations during adenosine-induced respiratory stimulation in man.  Eur J Clin Pharmacol. 1991;  40 175-180
  • 10 Smits P, Schouten J, Thien T H. Respiratory stimulant effects of adenosine in man after caffeine and enprofylline.  Br J Clin Pharmacol. 1987;  24 816-819
  • 11 Saito H, Nishimura M, Shinano H et al.. Plasma concentration of adenosine during normoxia and moderate hypoxia in humans.  Am J Respir Crit Care Med. 1999;  159 1014-1018
  • 12 Easton P A, Slykerman L J, Anthonisen N R. Ventilatory response to sustained hypoxia in normal adults.  J Appl Physiol. 1986;  61 906-911
  • 13 Bärtsch P, Grünig E, Hohenhaus E, Dehnert C. Assessment of high altitude tolerance in healthy individuals.  High Alt Med Biol. 2001;  2 287-296
  • 14 Hirshman C A, McCullough R E, Weil J V. Normal values for hypoxic and hypercapnic ventilatory drive in man.  J Appl Physiol. 1975;  38 1095-1098
  • 15 Hohenhaus E, Paul A, McCullough R E, Kücherer H, Bärtsch P. Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema.  Eur Respir J. 1995;  8 1825-1833
  • 16 van Klaveren R J, Demedts M. Determinants of the hypercapnic and hypoxic response in normal man.  Respir Physiol. 1998;  113 157-165
  • 17 Matsuzawa Y, Fujimoto K, Kobayashi T et al.. Blunted hypoxic ventilatory drive in subjects susceptible to high-altitude pulmonary edema.  J Appl Physiol. 1989;  66 1152-1157
  • 18 Milledge J S, Thomas P S, Beeley J M, English J SC. Hypoxic ventilatory response and acute mountain sickness.  Eur Respir J. 1988;  1 948-951
  • 19 Nishimura M, Yamamoto M, Yoshioka A, Akiyama Y, Kishi F, Kawakami Y. Longitudinal analyses of respiratory chemosensitivity in normal subjects.  Am Rev Respir Dis. 1991;  143 1278-1281
  • 20 Sahn S A, Zwillich C W, Dick N, McCullough R E, Lakshminarayan S, Weil J V. Variability of ventilatory responses to hypoxia and hypercapnia.  J Appl Physiol. 1977;  43 1019-1025
  • 21 West J B. Rate of ventilatory acclimatization to extreme altitude.  Respir Physiol. 1988;  74 323-333
  • 22 Hackett P H, Roach R C, Schoene R B, Harrison G L, Mills W J. Abnormal control of ventilation in high-altitude pulmonary edema.  J Appl Physiol. 1988;  64 1268-1272
  • 23 Insalaco G, Romano S, Salvaggio A et al.. Cardiovascular and ventilatory response to isocapnic hypoxia at sea level and at 5050 m.  J Appl Physiol. 1996;  80 1724-1730
  • 24 Sugimori K, Amin H M, Esposito B F, Seedat M S, Camporesi E M. Effect of slow versus fast desaturation on the ventilatory response to hypoxia.  J Med. 1996;  27 277-292
  • 25 Milic-Emili J, Whitelaw W A, Derenne J P. New tests to assess lung function: occlusion pressure-a simple measure of the respiratory center's output.  N Engl J Med. 1975;  293 1029-1030
  • 26 Whitelaw W A, Derenne J P, Millic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man.  Respir Physiol. 1975;  23 181-199
  • 27 Honda Y. Ventilatory depression during mild hypoxia in adult humans.  Jpn J Physiol. 1995;  45 947-959
  • 28 Moore L G, Harrison G L, McCullough R E et al.. Low acute hypoxic ventilatory response and hypoxic depression in acute altitude sickness.  J Appl Physiol. 1986;  60 1407-1412
  • 29 Sato M, Severinghaus J W, Bickler P. Time course of augmentation and depression of hypoxic ventilatory responses at altitude.  J Appl Physiol. 1994;  77 313-316
  • 30 Maxwell D L, Fuller R W, Nolop K B, Dixon C MS, Hughes M B. Effects of adenosine on ventilatory responses to hypoxia and hypercapnia.  J Appl Physiol. 1986;  61 1762-1766
  • 31 Parsons S T, Griffiths T L, Christie J ML, Holgate S T. Effect of theophylline and dipyridamole on the respiratory response to isocapnic hypoxia in normal subjects.  Clin Sci Lond. 1991;  80 107-112
  • 32 Watt A H, Routledge P A. Adenosine stimulates respiration in man.  Br J Clin Pharmacol. 1985;  20 503-506
  • 33 Johnson T S, Rock P B. Acute mountain sickness.  N Engl J Med. 1988;  319 841-845
  • 34 Griffiths T L, Christie J ML, Parsons S T, Holgate S T. The effect of dipyridamole and theophylline on hypercapnic ventilatory responses: the role of adenosine.  Eur Respir J. 1997;  10 156-160

Dirk DrummM.D. 

Innere Medizin V

Universitätskliniken des Saarlandes

66421 Homburg/Saar, Germany

Email: ddrumm@onlinehome.de

    >