Semin Respir Crit Care Med 2003; 24(2): 169-178
DOI: 10.1055/s-2003-39016
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Genetic Factors Modify the Risk of Developing Beryllium Disease

Sally S. Tinkle, Ainsley Weston, Melanie S. Flint
  • Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
Further Information

Publication History

Publication Date:
07 May 2003 (online)

ABSTRACT

Chronic beryllium disease (CBD) is a debilitating, granulomatous lung disease that occurs in 1 to 5% of exposed workers. Beryllium stimulates a major histocompatibility Class II-restricted, TH1, CD4+ T cell-mediated immune response. The immunological component of the illness, coupled with the small subset of beryllium workers who develop disease, led researchers to hypothesize that genetic factors modify risk of disease. Analysis of human leukocyte antigen (HLA) genes, the T cell receptor, and tumor necrosis factor (TNF)-α focused on three critical steps in the development of beryllium specific immunity. Molecular epidemiological analysis of the association of HLA-DP, -DR, and -DQ has implicated HLA-DPB1 E69 allelic variants in disease; however, its role in sensitization is unclear. A single report suggested association between HLA-DQB1 G86 and progression from sensitization to disease. A beryllium-specific binding motif was identified in CBD-derived T cell clones. Beryllium-stimulated proliferation using HLA-DPB110201 and TCRAV22S1/TCRBVb3 T cell receptors (TCRs) confirmed beryllium specificity of these molecules. The G/A transition at -308 in the TNF-α promoter was associated with high concentrations of TNF-α in bronchoalveolar lavage and to disease severity. Although these studies are continuing, the data confirm the role of genetic factors in the cellular response to beryllium.

REFERENCES

  • 1 Handbook of Chemistry and Physics 80th ed.  Boca Raton, FL: CRC Press LLC 1999: 4-122
  • 2 Kolanz M E. Introduction to beryllium: uses, regulatory history, and disease.  Appl Occup Environ Hyg . 2001;  16 559-567
  • 3 Van Ordstrand S H, Hughes R, De Nardi M J. et al . Beryllium poisoning.  JAMA . 1945;  129 1084
  • 4 Hardy H L, Tabershaw I R. Delayed chemical pneumonitis in beryllium workers.  J Ind Hyg Toxicol . 1946;  28 197-211
  • 5 Eisenbud M. Origins of the standards for control of beryllium disease (1947-1949).  Environ Res . 1982;  27 79-88
  • 6 Newman L S, Lloyd J, Daniloff E. The natural history of beryllium sensitization and chronic beryllium disease.  Environ Health Perspect . 1996;  104S 937-943
  • 7 Haley P J. Mechanisms of granulomatous lung disease from inhaled beryllium: the role of antigenicity in granuloma formation.  Toxicol Pathol . 1991;  19 514-525
  • 8 Rossman M D. Chronic beryllium disease: a hypersensitivity disorder.  Appl Occup Environ Hyg . 2001;  16 615-618
  • 9 Kreiss K, Mroz M M, Zhen B. et al . Epidemiology of beryllium sensitization and disease in nuclear workers.  Am Rev Respir Dis . 1993;  148 985-991
  • 10 Kreiss K, Mroz M M, Newman L S. et al . Machining risk of beryllium disease and sensitization with median exposures below 2 micrograms/m3 .  Am J Ind Med . 1996;  30 16-25
  • 11 Kreiss K, Mroz M M, Boguang. et al . Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant.  Occ Env Med . 1997;  54 1-9
  • 12 Agency OSHA. Preventive adverse health effects from exposure to beryllium in dental laboratories. 2002; Hazard Information Bulletin Available at: osha.gov/dts/hib/index.html. Accessed March 31 2003
  • 13 McCawley M A, Kent M S, Berakis M T. Ultrafine beryllium number concentration as a possible metric for chronic beryllium disease risk.  Appl Occup Environ Hyg . 2001;  16 631-638
  • 14 Alekseeva O G. Study of the ability of beryllium compounds to produce delayed type allergy.  Gig Tr Prof Zabol . 1965;  9 20-25
  • 15 Tinkle S S, Antonini J M, Rich B A. et al . Skin as a route of exposure and sensitization in chronic beryllium disease (in press).  Env Health Persp.
  • 16 Lansdown A B. Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions.  Crit Rev Toxicol . 1995;  25 397-462
  • 17 Saltini C, Winestock K, Kirby M. et al . Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells.  N Engl J Med . 1989;  320 1103-1109
  • 18 Tinkle S S, Newman L S. Beryllium-stimulated release of tumor necrosis factor-alpha, interleukin-6, and their soluble receptors in chronic beryllium disease.  Am J Respir Crit Care Med . 1997;  156 1884-1891
  • 19 Bost T W, Riches D W, Schumacher B. et al . Alveolar macrophages from patients with beryllium disease and sarcoidosis express increased levels of mRNA for tumor necrosis factor-alpha and interleukin-6 but not interleukin-1 beta.  Am J Respir Cell Mol Biol . 1994;  10 506-513
  • 20 Tinkle S S, Kittle L A, Schumacher B A, Newman L S. Beryllium induces IL-2 and IFN-gamma in berylliosis.  J Immunol . 1997;  158 518-526
  • 21 Fontenot A P, Kotzin B L, Comment C E, Newman L S. Expansions of T-cell subsets expressing particular T-cell receptor variable regions in chronic beryllium disease.  Am J Respir Cell Mol Biol . 1998;  18 581-589
  • 22 Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease.  Science . 1993;  262 242-244
  • 23 Richeldi L, Kreiss K, Mroz M M. et al . Interaction of genetic and exposure factors in the prevalence of berylliosis.  Am J Ind Med . 1997;  32 337-340
  • 24 Saltini C, Amicosante M, Franchi A. et al . Immunogenetic basis of environmental lung disease: lessons from the berylliosis model.  Eur Respir J . 1998;  12 1463-1475
  • 25 Amicosante M, Sanarico N, Berretta F. et al . Beryllium binding to HLA-DP molecule carrying the marker of susceptibility to berylliosis glutamate beta 69.  Hum Immunol . 2001;  62 686-693
  • 26 Saltini C, Amicosante M. Beryllium disease.  Am J Med Sci . 2001;  321 89-98
  • 27 Newman L S, Rose C S, Maier L A. Sarcoidosis.  N Engl J Med . 1997;  336 1224-1234
  • 28 Thomas P D, Hunninghake G W. Current concepts of the pathogenesis of sarcoidosis.  Am Rev Respir Dis . 1987;  135 747-760
  • 29 Kunkel S L, Chensue S W, Strieter R M. et al . Cellular and molecular aspects of granulomatous inflammation.  Am J Respir Cell Mol Biol . 1989;  1 439-447
  • 30 Inoue Y, King Jr E T, Tinkle S S. et al . Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders.  Am J Pathol . 1996;  149 2037-2054
  • 31 Newman L S. Metals that cause sarcoidosis.  Semin Respir Infect . 1998;  13 212-220
  • 32 Consortium Hearings. International sequencing and analysis of the human genome.  Nature . 2001;  409 860-921
  • 33 Chicz R M, Graziano D F, Trucco M. et al . HLA-DP2: Self peptide sequences and binding properties.  J Immunol . 1997;  159 4935-4932
  • 34 Wang Z, White P S, Petrovic M. et al . Differential susceptibilities to chronic beryllium disease contributed by different Glu69 HLA-DPB1 and -DPA1 alleles.  J Immunol . 1999;  163 1647-1653
  • 35 Wang Z, Farris G M, Newman L S. et al . Beryllium sensitivity is linked to HLA-DP genotype.  Toxicology . 2001;  165 27-38
  • 36 Rossman M D, Stubbs J, Lee C W. et al . Human leukocyte antigen Class II amino acid epitopes: susceptibility and progression markers for beryllium hypersensitivity.  Am J Respir Crit Care Med . 2002;  165 788-794
  • 37 Marsh S G. Nomenclature for factors of the HLA system, update September 2002. WHO Nomenclature Committee for Factors of the HLA System.  Tissue Antigens . 2000;  56 565-566
  • 38 Immunogenetics database. www.ebi.ac.uk/imgt/hla/allele. Accessed March 31, 2003
  • 39 McGuire W, Hill A V, Allsopp C E. et al . Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria.  Nature . 1994;  371 508-510
  • 40 Wilson A G, Gordon C, di Giovine S F. et al . A genetic association between systemic lupus erythematosus and tumor necrosis factor alpha.  Eur J Immunol . 1994;  24 191-195
  • 41 Allen R. Polymorphism of the human TNF-" promoter: a random variation of functional diversity?.  Molecular Immunol . 1999;  36 1017-1027
  • 42 Wilson A G, di Giovine S F, Blakemore A I, Duff G W. Single base polymorphism in the human tumour necrosis factor alpha (TNF alpha) gene detectable by NcoI restriction of PCR product.  Hum Mol Genet . 1992;  1 353
  • 43 Wilson A G, de Vries N, Pociot F. et al . An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles.  J Exp Med . 1993;  177 557-560
  • 44 Kroeger K M, Carville K S, Abraham L J. The -308 tumor necrosis factor-alpha promoter polymorphism affects transcription.  Mol Immunol . 1997;  34 391-399
  • 45 Bendtzen K, Morling N, Fomsgaard A. et al . Association between HLA-DR2 and production of tumour necrosis factor alpha and interleukin 1 by mononuclear cells activated by lipopolysaccharide.  Scand J Immunol . 1988;  28 599-606
  • 46 Jacob C O, Fronek Z, Lewis G D. et al . Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor alpha: relevance to genetic predisposition to systemic lupus erythematosus.  Proc Natl Acad Sci USA . 1990;  87 1233-1237
  • 47 Maier L A, Sawyer R T, Bauer R A. et al . High beryllium-stimulated TNF-α is associated with the -308 TNF-α promoter polymorphism and with clinical severity in chronic beryllium disease.  Am J Resp Crit Care Med . 2001;  164 1192-1199
  • 48 Svejgaard A, Ryder L P. HLA and disease associations: detecting the strongest association.  Tissue Antigens . 1994;  43 18-27
  • 49 Weston A, Ensey J, Kreiss K. et al . Racial differences in prevalence of a supratypic HLA-genetic marker, immaterial to preemployment testing for chronic beryllium disease.  Am J Ind Med . 2002;  41 457-465
    >