CC BY 4.0 · Eur J Dent 2024; 18(01): 073-085
DOI: 10.1055/s-0043-1768975
Review Article

The Effect of Grape Seed Extract on the Alveolar, Jaw, and Skeletal Bone Remodeling: A Scoping Review

Erdiarti Dyah Wahyuningtyas
1   Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Ari Triwardhani
1   Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
I Gusti Aju Wahju Ardani
1   Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
,
Meircurius Dwi Condro Surboyo
2   Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
› Author Affiliations

Abstract

Herbal medicine has an important part in promoting and maintaining human health. One of them was grape seed extract (GSE). Various potentials of GSE in human health have been explored, and its potential for maintaining bone health is promising. Some initial research has provided evidence that the GSE was able to affect bone remodeling (bone resorption and bone formation). This scoping review analyzed and discussed all the reports on the effect of GSE on bone healing and bone remodeling in animals in the alveolar bone, jaw bone, and skeletal bone. The further purpose is to give an opportunity to research and development of supplementation of GSE for humans.

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines were used to compose this scoping review through database on Scopus, PubMed, Science Direct, Web of Science, Embase, and manual search until December 2022. The inclusion criteria were a study that analyzed the effect of supplementation GSE on all bones.

All included study was in vivo study with supplementation of GSE. The supplementation of GSE affects the alveolar bone, jaw bones, and skeletal bone by promoting bone formation and inhibiting bone resorption by suppressing inflammation, apoptosis pathways, and osteoclastogenesis. It not only supports bone remodeling in bone inflammation, osteonecrosis, osteoporosis, and arthritis but also the GSE increases bone health by increasing the density and mineral deposition in trabecula and cortical bone.

The supplementation of GSE supports bone remodeling by interfering with the inflammation process and bone formation not only by preventing bone resorption but also by maintaining bone density.



Publication History

Article published online:
13 June 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Zhou DD, Li J, Xiong RG. et al. Bioactive compounds, health benefits and food applications of grape. Foods 2022; 11 (18) 2755
  • 2 Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. J Food Sci Technol 2020; 57 (04) 1205-1215
  • 3 Rodríguez-Pérez C, García-Villanova B, Guerra-Hernández E, Verardo V. Grape seeds proanthocyanidins: an overview of in vivo bioactivity in animal models. Nutrients 2019; 11 (10) 2435
  • 4 Ma ZF, Zhang H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: a mini-review. Antioxidants 2017; 6 (03) 71
  • 5 Cádiz-Gurrea ML, Borrás-Linares I, Lozano-Sánchez J, Joven J, Fernández-Arroyo S, Segura-Carretero A. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins. Int J Mol Sci 2017; 18 (02) 376
  • 6 Sochorova L, Prusova B, Cebova M. et al. Health effects of grape seed and skin extracts and their influence on biochemical markers. Molecules 2020; 25 (22) 5311
  • 7 Wren AF, Cleary M, Frantz C, Melton S, Norris L. 90-day oral toxicity study of a grape seed extract (IH636) in rats. J Agric Food Chem 2002; 50 (07) 2180-2192
  • 8 Perumalla AVS, Hettiarachchy Navam S. Green tea and grape seed extracts — Potential applications in food safety and quality. Food Res Int 2011; 44 (04) 827-839
  • 9 Delimont NM, Carlson BN. Prevention of dental caries by grape seed extract supplementation: a systematic review. Nutr Health 2020; 26 (01) 43-52
  • 10 Zhao W, Xie Q, Bedran-Russo AK, Pan S, Ling J, Wu CD. The preventive effect of grape seed extract on artificial enamel caries progression in a microbial biofilm-induced caries model. J Dent 2014; 42 (08) 1010-1018
  • 11 Carvalho TS, Muçolli D, Eick S, Baumann T. Salivary pellicle modification with grape-seed extract: in vitro study on the effect on bacterial adhesion and biofilm formation. Oral Health Prev Dent 2021; 19 (01) 301-309
  • 12 D'aviz FS, Lodi E, Souza MA, Farina AP, Cecchin D. Antibacterial efficacy of the grape seed extract as an irrigant for root canal preparation. Eur Endod J 2020; 5 (01) 35-39
  • 13 Dimitriu T, Bolfa P, Suciu S. et al. Grape seed extract reduces the degree of atherosclerosis in ligature-induced periodontitis in rats - an experimental study. J Med Life 2020; 13 (04) 580-586
  • 14 Das M, Das AC, Panda S. et al. Clinical efficacy of grape seed extract as an adjuvant to scaling and root planning in treatment of periodontal pockets. J Biol Regul Homeost Agents 2021; 35 (2, Suppl. 1): 89-96
  • 15 Alhasyimi AA, Rosyida NF, Rihadini MS. Postorthodontic relapse prevention by administration of grape seed (Vitis vinifera) extract containing cyanide in rats. Eur J Dent 2019; 13 (04) 629-634
  • 16 Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020; 9 (09) 2073
  • 17 Kitaura H, Marahleh A, Ohori F. et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci 2020; 21 (14) 5169
  • 18 Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci 2021; 13 (01) 20
  • 19 Zhang M, Yu Y, He D, Liu D, Zhou Y. Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading. J World Fed Orthod 2022; 11 (05) 139-145
  • 20 Kalina E, Grzebyta A, Zadurska M. Bone remodeling during orthodontic movement of lower incisors-narrative review. Int J Environ Res Public Health 2022; 19 (22) 15002
  • 21 Sano A, Uchida R, Saito M. et al. Beneficial effects of grape seed extract on malondialdehyde-modified LDL. J Nutr Sci Vitaminol (Tokyo) 2007; 53 (02) 174-182
  • 22 Pinent M, Castell-Auví A, Genovese MI. et al. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa. J Sci Food Agric 2016; 96 (01) 178-182
  • 23 Silvan JM, Gutierrez-Docio A, Guerrero-Hurtado E. et al. Pre-treatment with grape seed extract reduces inflammatory response and oxidative stress induced by Helicobacter pylori infection in human gastric epithelial cells. Antioxidants 2021; 10 (06) 943
  • 24 Ardid-Ruiz A, Harazin A, Barna L. et al. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: expression of leptin receptors and protection against cytokine-induced damage. J Ethnopharmacol 2020; 247: 112253
  • 25 Ghalishourani SS, Farzollahpour F, Shirinbakhshmasoleh M. et al. Effects of grape products on inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 2021; 35 (09) 4898-4912
  • 26 Asbaghi O, Nazarian B, Reiner Ž. et al. The effects of grape seed extract on glycemic control, serum lipoproteins, inflammation, and body weight: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 34 (02) 239-253
  • 27 Foshati S, Rouhani MH, Amani R. The effect of grape seed extract supplementation on oxidative stress and inflammation: a systematic review and meta-analysis of controlled trials. Int J Clin Pract 2021; 75 (11) e14469
  • 28 Tenkumo T, Aobulikasimu A, Asou Y. et al. Proanthocyanidin-rich grape seed extract improves bone loss, bone healing, and implant osseointegration in ovariectomized animals. Sci Rep 2020; 10 (01) 8812
  • 29 Zhu W, Yin Z, Zhang Q. et al. Proanthocyanidins inhibit osteoclast formation and function by inhibiting the NF-κB and JNK signaling pathways during osteoporosis treatment. Biochem Biophys Res Commun 2019; 509 (01) 294-300
  • 30 Li X, Xu L, Gao H, Li B, Cheng M. Effects of grape seed proanthocyanidins extracts on AGEs and expression of bone morphogenetic protein-7 in diabetic rats. J Nephrol 2008; 21 (05) 722-733
  • 31 Ishikawa M, Maki K, Tofani I, Kimura K, Kimura M. Grape seed proanthocyanidins extract promotes bone formation in rat's mandibular condyle. Eur J Oral Sci 2005; 113 (01) 47-52
  • 32 Tanideh N, Ashkani-Esfahani S, Sadeghi F. et al. The protective effects of grape seed oil on induced osteoarthritis of the knee in male rat models. J Orthop Surg Res 2020; 15 (01) 400
  • 33 Khurshid Z, Tariq R, Asiri FY, Abid K, Zafar MS. Literature search strategies in dental education and research. J Taibah Univ Med Sci 2021; 16 (06) 799-806
  • 34 Aksakallı S, Ezirganlı Ş, Birlik M, Kazancıoğlu HO, Aydın MŞ. Effect of grape seed extract on bone formation in the expanded inter-premaxillary suture. Meandros Med Dent J 2020; 21 (01) 34-40
  • 35 Dimitriu T, Daradics Z, Suciu S. et al. The effects of a grape seed extract on ligature induced – periodontitis in rats – an experimental study. Rom Biotechnol Lett 2021; 26 (01) 2347-2354
  • 36 Toker H, Balci Yuce H, Lektemur Alpan A, Gevrek F, Elmastas M. Morphometric and histopathological evaluation of the effect of grape seed proanthocyanidin on alveolar bone loss in experimental diabetes and periodontitis. J Periodontal Res 2018; 53 (03) 478-486
  • 37 Kara M, Kesim S, Aral CA, Elmalı F. Effect of grape seed extract upon plasma oxidative status and alveolar bone, in ligature induced periodontitis. Biotechnol Biotechnol Equip 2013; 27 (05) 4131-4136
  • 38 Gunardi OJ, Agustina Putri Kintan A, Soesanto R, Sumarta NPM. Grape seed extract increase osteoblast number in the post-extraction socket healing in rats. Biochem Cell Arch 2019; 19 (Suppl. 02) 4877-4881
  • 39 Hassan MAA, AL-Ghaban NMH. Immunohistochemical localization of bone morphogenic protein-2 in extracted tooth socket treated by local application of grape seeds oil in rabbits. Biochem Cell Arch 2020; 20 (01) 581-589
  • 40 Kamitani Y, Maki K, Tofani I, Nishikawa Y, Tsukamoto K, Kimura M. Effects of grape seed proanthocyanidins extract on mandibles in developing rats. Oral Dis 2004; 10 (01) 27-31
  • 41 Gunjima M, Tofani I, Kojima Y, Maki K, Kimura M. Mechanical evaluation of effect of grape seed proanthocyanidins extract on debilitated mandibles in rats. Dent Mater J 2004; 23 (02) 67-74
  • 42 Kojima K, Maki K, Tofani I, Kamitani Y, Kimura M. Effects of grape seed proanthocyanidins extract on rat mandibular condyle. J Musculoskelet Neuronal Interact 2004; 4 (03) 301-307
  • 43 Gurger M, Yilmaz E, Yilmaz S. et al. Grape seed extract supplement increases bone callus formation and mechanical strength: an animal study. J Orthop Surg Res 2019; 14 (01) 206
  • 44 Tofani I, Maki K, Kojima K, Kimura M. Beneficial effects of grape seed proanthocyanidins extract on formation of tibia bone in low-calcium feeding rats. Pediatr Dent J 2004; 14 (01) 47-53
  • 45 Yahara N, Tofani I, Maki K, Kojima K, Kojima Y, Kimura M. Mechanical assessment of effects of grape seed proanthocyanidins extract on tibial bone diaphysis in rats. J Musculoskelet Neuronal Interact 2005; 5 (02) 162-169
  • 46 Mitsui J, Tofani I, Okura H, Hashimoto T, Maki K, Kimura M. Effect of grape seed proanthocyanidins extract on alteration of mechanical properties of metaphysis tibia bone in rats fed a low-calcium diet. Pediatr Dent J 2005; 15 (01) 28-34
  • 47 Asano T, Tofani I, Gunjima M, Ohkura H, Maki K, Kimura M. Mechanical evaluation of debilitated tibia diaphysis in rats during the growth period-combination therapy with high-calcium diet and grape seed proanthocyanidin extract-. Pediatr Dent J 2005; 15 (01) 35-42
  • 48 Kwak SC, Cheon YH, Lee CH. et al. Grape seed proanthocyanidin extract prevents bone loss via regulation of osteoclast differentiation, apoptosis, and proliferation. Nutrients 2020; 12 (10) 3164
  • 49 Hasona NA, Morsi A, Alghabban AA. The impact of grape proanthocyanidin extract on dexamethasone-induced osteoporosis and electrolyte imbalance. Comp Clin Pathol 2018; 27 (05) 1213-1219
  • 50 Oršolić N, Nemrava J, Jeleč Ž. et al. The beneficial effect of proanthocyanidins and icariin on biochemical markers of bone turnover in rats. Int J Mol Sci 2018; 19 (09) 2746
  • 51 Song Q, Shi Z, Bi W. et al. Beneficial effect of grape seed proanthocyanidin extract in rabbits with steroid-induced osteonecrosis via protecting against oxidative stress and apoptosis. J Orthop Sci 2015; 20 (01) 196-204
  • 52 Zhang ZF, Wei J, Sun T, Song JL, Zhao ZQ, Huang J. Grape seed proanthocyanidins antagonize osteocyte apoptosis due to steroid-induced osteonecrosis of the femoral head. Chinese Journal of Tissue Engineering Research. 2020; 24 (26) 4146-4151
  • 53 Park JS, Park MK, Oh HJ. et al. Grape-seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune arthritis. PLoS One 2012; 7 (12) e51377
  • 54 Woo YJ, Joo YB, Jung YO. et al. Grape seed proanthocyanidin extract ameliorates monosodium iodoacetate-induced osteoarthritis. Exp Mol Med 2011; 43 (10) 561-570
  • 55 Mendoza S, Noa M, Mas R, Valle M, Mendoza N. Effects of D-002 and grape seed extract on monoiodo-acetate induced osteoarthritis in rats. Int J Pharm Sci Rev Res 2016; 37 (01) 1-6
  • 56 Cho ML, Heo YJ, Park MK. et al. Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis. Immunol Lett 2009; 124 (02) 102-110
  • 57 Liu M, Yun P, Hu Y, Yang J, Khadka RB, Peng X. Effects of grape seed proanthocyanidin extract on obesity. Obes Facts 2020; 13 (02) 279-291
  • 58 Grohmann T, Litts C, Horgan G. et al. Efficacy of bilberry and grape seed extract supplement interventions to improve glucose and cholesterol metabolism and blood pressure in different populations-a systematic review of the literature. Nutrients 2021; 13 (05) 1692
  • 59 Anjom-Shoae J, Milajerdi A, Larijani B, Esmaillzadeh A. Effects of grape seed extract on dyslipidaemia: a systematic review and dose-response meta-analysis of randomised controlled trials. Br J Nutr 2020; 124 (02) 121-134
  • 60 Feringa HHH, Laskey DA, Dickson JE, Coleman CI. The effect of grape seed extract on cardiovascular risk markers: a meta-analysis of randomized controlled trials. J Am Diet Assoc 2011; 111 (08) 1173-1181
  • 61 Foshati S, Nouripour F, Sadeghi E, Amani R. The effect of grape (Vitis vinifera) seed extract supplementation on flow-mediated dilation, blood pressure, and heart rate: a systematic review and meta-analysis of controlled trials with duration- and dose-response analysis. Pharmacol Res 2022; 175: 105905
  • 62 Odai T, Terauchi M, Kato K, Hirose A, Miyasaka N. Effects of grape seed proanthocyanidin extract on vascular endothelial function in participants with prehypertension: a randomized, double-blind, placebo-controlled study. Nutrients 2019; 11 (12) 2844
  • 63 Olaku OO, Ojukwu MO, Zia FZ, White JD. The role of grape seed extract in the treatment of chemo/radiotherapy induced toxicity: a systematic review of preclinical studies. Nutr Cancer 2015; 67 (05) 730-740
  • 64 Sarkhosh-Khorasani S, Hosseinzadeh M. The effect of grape products containing polyphenols on C-reactive protein levels: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2021; 125 (11) 1230-1245
  • 65 Zamani M, Ashtary-Larky D, Hafizi N. et al. The effect of grape products on liver enzymes: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36 (12) 4491-4503
  • 66 Al-Mousawi AH, Al-Kaabi SJ, Albaghdadi AJH, Almulla AF, Raheem A, Algon AAA. Effect of black grape seed extract (Vitis vinifera) on biofilm formation of methicillin-resistant Staphylococcus aureus and Staphylococcus haemolyticus. Curr Microbiol 2020; 77 (02) 238-245
  • 67 Abdel-Salam OME, Galal AF, Hassanane MM, Salem LM, Nada SA, Morsy FA. Grape seed extract alone or combined with atropine in treatment of malathion induced neuro- and genotoxicity. J Nanosci Nanotechnol 2018; 18 (01) 564-575
  • 68 Zhu J, Tang Y, Wu Q, Ji YC, Feng ZF, Kang FW. HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. J Cell Physiol 2019; 234 (11) 21182-21192
  • 69 Usategui-Martín R, Rigual R, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas A, Pérez-Castrillón JL. Molecular mechanisms involved in hypoxia-induced alterations in bone remodeling. Int J Mol Sci 2022; 23 (06) 3233
  • 70 Ni S, Yuan Y, Qian Z. et al. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med 2021; 169: 271-282
  • 71 Han B, Geng H, Liu L, Wu Z, Wang Y. GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo. Biomed Pharmacother 2020; 128: 110305
  • 72 Zeng YX, Wang S, Wei L, Cui YY, Chen YH. Proanthocyanidins: components, pharmacokinetics and biomedical properties. Am J Chin Med 2020; 48 (04) 813-869
  • 73 Xu WW, Xu Y, Ji F, Ji Y, Wang QG. Inhibition of long non-coding RNA TSIX accelerates tibia fraction healing via binding and positively regulating the SOX6 expression. Eur Rev Med Pharmacol Sci 2020; 24 (08) 4070-4079
  • 74 Uusitalo H, Hiltunen A, Ahonen M. et al. Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J Bone Miner Res 2001; 16 (10) 1837-1845
  • 75 Yang TL, Guo Y, Liu YJ. et al. Genetic variants in the SOX6 gene are associated with bone mineral density in both Caucasian and Chinese populations. Osteoporos Int 2012; 23 (02) 781-787
  • 76 Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev Rep 2012; 8 (03) 891-897
  • 77 Zeng L, He H, Sun M. et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther 2022; 13 (01) 486
  • 78 Ono K, Hata K, Nakamura E. et al. Dmrt2 promotes transition of endochondral bone formation by linking Sox9 and Runx2. Commun Biol 2021; 4 (01) 326
  • 79 Lin L, Shen Q, Leng H, Duan X, Fu X, Yu C. Synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2 in trauma-induced heterotopic ossification. Mol Ther 2011; 19 (08) 1426-1432
  • 80 Perinpanayagam H, Martin T, Mithal V. et al. Alveolar bone osteoblast differentiation and Runx2/Cbfa1 expression. Arch Oral Biol 2006; 51 (05) 406-415
  • 81 Xu C, Wang A, Zhang L. et al. Epithelium-Specific Runx2 knockout mice display junctional epithelium and alveolar bone defects. Oral Dis 2021; 27 (05) 1292-1299
  • 82 Zeng XZ, He LG, Wang S. et al. Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016; 37 (02) 255-263
  • 83 Yang Y, Chung MR, Zhou S. et al. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription. J Biol Chem 2019; 294 (42) 15395-15407
  • 84 Son A, Kang N, Oh SY. et al. Homer2 and Homer3 modulate RANKL-induced NFATc1 signaling in osteoclastogenesis and bone metabolism. J Endocrinol 2019; 242 (03) 241-249
  • 85 Ding D, Yan J, Feng G, Zhou Y, Ma L, Jin Q. Dihydroartemisinin attenuates osteoclast formation and bone resorption via inhibiting the NF‑κB, MAPK and NFATc1 signaling pathways and alleviates osteoarthritis. Int J Mol Med 2022; 49 (01) 4
  • 86 Shen C, Xiong WC, Mei L. LRP4 in neuromuscular junction and bone development and diseases. Bone 2015; 80: 101-108
  • 87 Saiganesh S, Saathvika R, Udhaya V, Arumugam B, Vishal M, Selvamurugan N. Matrix metalloproteinase-13: a special focus on its regulation by signaling cascades and microRNAs in bone. Int J Biol Macromol 2018; 109: 338-349