CC BY 4.0 · Indian J Med Paediatr Oncol 2023; 44(03): 314-321
DOI: 10.1055/s-0042-1760310
Review Article

Imaging Recommendations for Theranostic PET-CT in Oncology

Rahul V. Parghane
1   Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Parel, Mumbai, Maharashtra, India
2   Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
3   Department of Radiodiagnosis, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, United Kingdom
,
4   Department of Radiodiagnosis, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
,
1   Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Parel, Mumbai, Maharashtra, India
2   Homi Bhabha National Institute, Mumbai, Maharashtra, India
› Author Affiliations

Abstract

We in this article have presented a review of the guideline recommendations on theranostic positron emission tomography-computed tomography (PET-CT) imaging which will be helpful to assist practitioners in providing appropriate patient care. Multiple guidelines by different societies and medical associations provide standards for diagnosis, imaging, and treatment of cancer patients. They have generated a number of recommendations related to 68Ga-DOTATATE and 68Ga-PSMA-11 PET-CT, which are the classical examples of theranostic PET-CT imaging in current practice.

Authors' Contributions

Rahul V. Parghane was involved in conceptualization, designing, definition of intellectual content, literature search, manuscript preparation, manuscript editing, and manuscript review. Abhishek Mahajan contributed to conceptualization, designing, manuscript editing, and manuscript review. Nivedita Chakrabarty edited and reviewed the manuscript. Sandip Basu contributed to conceptualization, designing, definition of intellectual content, manuscript editing, and manuscript review.


Ethical Committee Clearance

Not required as patient data not revealed.


The manuscript has been read and approved by all the authors and the requirements for authorship have been met, and each author believes that the manuscript represents honest work.


Supplementary Material



Publication History

Article published online:
01 March 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • Reference

  • 1 Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem 2011; 22 (10) 1879-1903
  • 2 DeNardo GL, DeNardo SJ. Concepts, consequences, and implications of theranosis. Semin Nucl Med 2012; 42 (03) 147-150
  • 3 Turner JH. Recent advances in theranostics and challenges for the future. Br J Radiol 2018; 91 (1091): 20170893
  • 4 Modlin IM, Oberg K, Chung DC. et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9 (01) 61-72
  • 5 Krenning EP, Kwekkeboom DJ, Bakker WH. et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20 (08) 716-731
  • 6 Krenning EP, Bakker WH, Breeman WA. et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 1989; 1 (8632): 242-244
  • 7 Hofmann M, Maecke H, Börner R. et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001; 28 (12) 1751-1757
  • 8 Singh S, Poon R, Wong R, Metser U. 68Ga PET imaging in patients with neuroendocrine tumors: a systematic review and meta-analysis. Clin Nucl Med 2018; 43 (11) 802-810
  • 9 Levine R, Krenning EP. Clinical history of the theranostic radionuclide approach to neuroendocrine tumors and other types of cancer: historical review based on an interview of Eric P. Krenning by Rachel Levine. J Nucl Med 2017; 58 (Suppl 2): 3S-9S
  • 10 Raj N, Reidy-Lagunes D. The Role of 68Ga-DOTATATE positron emission tomography/computed tomography in well-differentiated neuroendocrine tumors: a case-based approach illustrates potential benefits and challenges. Pancreas 2018; 47 (01) 1-5
  • 11 Öberg K, Knigge U, Kwekkeboom D, Perren A. ESMO Guidelines Working Group. Neuroendocrine gastro-enteropancreatic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23 (suppl7): 124-130
  • 12 Shah MH, Goldner WS, Halfdanarson TR. et al. NCCN guidelines insights: neuroendocrine and adrenal tumors, Version 2.2018. J Natl Compr Canc Netw 2018; 16 (06) 693-702
  • 13 Hope TA, Bergsland EK, Bozkurt MF. et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med 2018; 59 (01) 66-74
  • 14 Bozkurt MF, Virgolini I, Balogova S. et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging 2017; 44 (09) 1588-1601
  • 15 Campana D, Ambrosini V, Pezzilli R. et al. Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 2010; 51 (03) 353-359
  • 16 Conry BG, Papathanasiou ND, Prakash V. et al. Comparison of (68)Ga-DOTATATE and (18)F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2010; 37 (01) 49-57
  • 17 Kayani I, Bomanji JB, Groves A. et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 2008; 112 (11) 2447-2455
  • 18 Ambrosini V, Tomassetti P, Castellucci P. et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 2008; 35 (08) 1431-1438
  • 19 Fanti S, Ambrosini V, Tomassetti P. et al. Evaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PET. Biomed Pharmacother 2008; 62 (10) 667-671
  • 20 Kayani I, Conry BG, Groves AM. et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 2009; 50 (12) 1927-1932
  • 21 Ambrosini V, Castellucci P, Rubello D. et al. 68Ga-DOTA-NOC: a new PET tracer for evaluating patients with bronchial carcinoid. Nucl Med Commun 2009; 30 (04) 281-286
  • 22 Schartinger VH, Dudás J, Decristoforo C. et al. 68Ga-DOTA0-Tyr3-octreotide positron emission tomography in head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2013; 40 (09) 1365-1372
  • 23 Kauhanen S, Seppänen M, Minn H. et al. Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) positron emission tomography as a tool to localize an insulinoma or beta-cell hyperplasia in adult patients. J Clin Endocrinol Metab 2007; 92 (04) 1237-1244
  • 24 Traub-Weidinger T, Putzer D, von Guggenberg E. et al. Multiparametric PET imaging in thyroid malignancy characterizing tumour heterogeneity: somatostatin receptors and glucose metabolism. Eur J Nucl Med Mol Imaging 2015; 42 (13) 1995-2001
  • 25 Prasad V, Ambrosini V, Hommann M, Hoersch D, Fanti S, Baum RP. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 2010; 37 (01) 67-77
  • 26 Putzer D, Gabriel M, Henninger B. et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 2009; 50 (08) 1214-1221
  • 27 Ambrosini V, Nanni C, Zompatori M. et al. (68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2010; 37 (04) 722-727
  • 28 Ugur O, Kothari PJ, Finn RD. et al. Ga-66 labeled somatostatin analogue DOTA-DPhe1-Tyr3-octreotide as a potential agent for positron emission tomography imaging and receptor mediated internal radiotherapy of somatostatin receptor positive tumors. Nucl Med Biol 2002; 29 (02) 147-157
  • 29 Gabriel M, Oberauer A, Dobrozemsky G. et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med 2009; 50 (09) 1427-1434
  • 30 Pavel M, Öberg K, Falconi M. et al; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2020; 31 (07) 844-860
  • 31 Sundin A, Arnold R, Baudin E. et al; Antibes Consensus Conference participants. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging. Neuroendocrinology 2017; 105 (03) 212-244
  • 32 Shah MH, Goldner WS, Benson AB. et al. Neuroendocrine and adrenal tumors, Version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19 (07) 839-868
  • 33 Barbosa FG, Queiroz MA, Nunes RF. et al. Revisiting prostate cancer recurrence with PSMA PET: atlas of typical and atypical patterns of spread. Radiographics 2019; 39 (01) 186-212
  • 34 Scher HI, Fizazi K, Saad F. et al; AFFIRM Investigators. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367 (13) 1187-1197
  • 35 Kratochwil C, Giesel FL, Eder M. et al. [177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42 (06) 987-988
  • 36 Afshar-Oromieh A, Avtzi E, Giesel FL. et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42 (02) 197-209
  • 37 Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics 2018; 38 (01) 200-217
  • 38 Eiber M, Maurer T, Souvatzoglou M. et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 2015; 56 (05) 668-674
  • 39 Rauscher I, Maurer T, Fendler WP, Sommer WH, Schwaiger M, Eiber M. (68)Ga-PSMA ligand PET/CT in patients with prostate cancer: how we review and report. Cancer Imaging 2016; 16 (01) 14
  • 40 Ballas LK, de Castro Abreu AL, Quinn DI. What medical, urologic, and radiation oncologists want from molecular imaging of prostate cancer. J Nucl Med 2016; 57 (Suppl 3): 6S-12S
  • 41 Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Eiber M. 177Lu-PSMA radioligand therapy for prostate cancer. J Nucl Med 2017; 58 (08) 1196-1200
  • 42 Emmett L, Willowson K, Violet J, Shin J, Blanksby A, Lee J. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci 2017; 64 (01) 52-60
  • 43 Fendler WP, Eiber M, Beheshti M. et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 2017; 44 (06) 1014-1024
  • 44 Trabulsi EJ, Rumble RB, Jadvar H. et al. Optimum imaging strategies for advanced prostate cancer: ASCO guideline. J Clin Oncol 2020; 38 (17) 1963-1996
  • 45 Mottet N, van den Bergh RCN, Briers E. et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2021; 79 (02) 243-262
  • 46 Cornford P, van den Bergh RCN, Briers E. et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. Part II-2020 update: treatment of relapsing and metastatic prostate cancer. Eur Urol 2021; 79 (02) 263-282
  • 47 NCCN CLINICAL PRACTICE GUIDELINES IN ONCOLOGY. Prostate cancer version 3.2022-January 2022. Accessed December 12, 2022, at: https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
  • 48 Jiang GM, Xu W, Du J. et al. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2016; 7 (22) 33472-33482
  • 49 Lindner T, Loktev A, Altmann A. et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med 2018; 59 (09) 1415-1422
  • 50 Kratochwil C, Flechsig P, Lindner T. et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 2019; 60 (06) 801-805
  • 51 Ballal S, Yadav MP, Kramer V. et al. A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 2021; 48 (03) 942-944
  • 52 Ferdinandus J, Costa PF, Kessler L. et al. Initial clinical experience with 90Y-FAPI-46 radioligand therapy for advanced stage solid tumors: a case series of nine patients. J Nucl Med 2022; 63 (05) 727-734
  • 53 Kratochwil C, Giesel FL, Rathke H. et al. [153Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. Eur J Nucl Med Mol Imaging 2021; 48 (09) 3011-3013
  • 54 Regmi SK, Sathianathen N, Stout TE, Konety BR. MRI/PET Imaging in elevated PSA and localized prostate cancer: a narrative review. Transl Androl Urol 2021; 10 (07) 3117-3129
  • 55 Liu F, Dong J, Shen Y. et al. Comparison of PET/CT and MRI in the diagnosis of bone metastasis in prostate cancer patients: a network analysis of diagnostic studies. Front Oncol 2021; 11: 736654
  • 56 Kichloo A, Amir R, Aljadah M. et al. FDG-PET versus PSMA-PET: a patient with prostate cancer. J Investig Med High Impact Case Rep 2020; 8: 2324709620941313
  • 57 Tsechelidis I, Vrachimis A. PSMA PET in Imaging Prostate Cancer. Front Oncol 2022; 12: 831429
  • 58 Smith-Bindman R, Lipson J, Marcus R. et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 2009; 169 (22) 2078-2086
  • 59 Kwon HW, Kim JP, Lee HJ. et al. Radiation dose from whole-body F-18 fluorodeoxyglucose positron emission tomography/computed tomography: Nationwide Survey in Korea. J Korean Med Sci 2016; 31 Suppl 1 (Suppl 1): S69-S74
  • 60 Waller J, Flavell R, Heath CL. High accuracy of PSMA PET in initial staging of high-risk prostate cancer. Radiol Imaging Cancer 2020; 2 (04) e204025
  • 61 Maxwell JE, Howe JR. Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol 2015; 2 (02) 159-168
  • 62 Gamal GH. The utility of 18F-FDG PET/CT in the diagnosis, staging of non-functioning pancreatic neuroendocrine tumors. Egypt J Radiol Nucl Med 2021; 52 (01) 234
  • 63 Schraml C, Schwenzer NF, Sperling O. et al. Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging 2013; 13 (01) 63-72
  • 64 Garcia-Carbonero R, Garcia-Figueiras R, Carmona-Bayonas A. et al; Spanish Cooperative Group of Neuroendocrine Tumors (GETNE). Imaging approaches to assess the therapeutic response of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): current perspectives and future trends of an exciting field in development. Cancer Metastasis Rev 2015; 34 (04) 823-842
  • 65 Accessed December 12, 2022, at: https://clinicaltrials.gov/ProvidedDocs/28/NCT03136328/Prot_SAP_000.pdf
  • 66 Naswa N, Sharma P, Kumar A. et al. Gallium-68-DOTA-NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: a prospective single-center study. AJR Am J Roentgenol 2011; 197 (05) 1221-1228
  • 67 Thapa P, Ranade R, Ostwal V, Shrikhande SV, Goel M, Basu S. Performance of 177Lu-DOTATATE-based peptide receptor radionuclide therapy in metastatic gastroenteropancreatic neuroendocrine tumor: a multiparametric response evaluation correlating with primary tumor site, tumor proliferation index, and dual tracer imaging characteristics. Nucl Med Commun 2016; 37 (10) 1030-1037
  • 68 Sampathirao N, Basu S. MIB-1 index-stratified assessment of dual-tracer PET/CT with 68Ga-DOTATATE and 18F-FDG and multimodality anatomic imaging in metastatic neuroendocrine tumors of unknown primary in a PRRT workup setting. J Nucl Med Technol 2017; 45 (01) 34-41
  • 69 Basu S, Sirohi B, Shrikhande SV. Dual tracer imaging approach in assessing tumor biology and heterogeneity in neuroendocrine tumors: its correlation with tumor proliferation index and possible multifaceted implications for personalized clinical management decisions, with focus on PRRT. Eur J Nucl Med Mol Imaging 2014; 41 (08) 1492-1496
  • 70 Basu S, Chakraborty S, Parghane RV. et al. One decade of ‘Bench-to-Bedside’ peptide receptor radionuclide therapy with indigenous [177Lu]Lu-DOTATATE obtained through ‘Direct’ neutron activation route: lessons learnt including practice evolution in an Indian setting. Am J Nucl Med Mol Imaging 2020; 10 (04) 178-211
  • 71 Basu S, Parghane RV, Kamaldeep, Chakrabarty S. Peptide receptor radionuclide therapy of neuroendocrine tumors. Semin Nucl Med 2020; 50 (05) 447-464
  • 72 Parghane RV, Talole S, Basu S. Prevalence of hitherto unknown brain meningioma detected on 68Ga-DOTATATE positron-emission tomography/computed tomography in patients with metastatic neuroendocrine tumor and exploring potential of 177Lu-DOTATATE peptide receptor radionuclide therapy as single-shot treatment approach targeting both tumors. World J Nucl Med 2019; 18 (02) 160-170
  • 73 Parghane RV, Talole S, Basu S. 131I-MIBG negative progressive symptomatic metastatic paraganglioma: response and outcome with 177Lu-DOTATATE peptide receptor radionuclide therapy. Ann Nucl Med 2021; 35 (01) 92-101
  • 74 Parghane RV, Ostwal V, Ramaswamy A. et al. Long-term outcome of “Sandwich” chemo-PRRT: a novel treatment strategy for metastatic neuroendocrine tumors with both FDG- and SSTR-avid aggressive disease. Eur J Nucl Med Mol Imaging 2021; 48 (03) 913-923
  • 75 Parghane RV, Naik C, Talole S. et al. Clinical utility of 177 Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck 2020; 42 (03) 401-416
  • 76 Basu S, Parghane RV, Naik C. Clinical efficacy of 177Lu-DOTATATE peptide receptor radionuclide therapy in thyroglobulin-elevated negative iodine scintigraphy: a “not-so-promising” result compared to GEP-NETs. World J Nucl Med 2020; 19 (03) 205-210
  • 77 Parghane RV, Bhandare M, Chaudhari V. et al. Surgical feasibility, determinants, and overall efficacy of neoadjuvant 177Lu-DOTATATE PRRT for locally advanced unresectable gastroenteropancreatic neuroendocrine tumors. J Nucl Med 2021; 62 (11) 1558-1563
  • 78 Jain H, Sood R, Faridi MS, Goel H, Sharma U. Role of 68Ga-PSMA-PET/CT for the detection of primary prostate cancer prior to biopsy: a prospective study. Cent European J Urol 2021; 74 (03) 315-320
  • 79 Kallur KG, Ramachandra PG, Rajkumar K. et al. Clinical utility of Gallium-68 PSMA PET/CT scan for prostate cancer. Indian J Nucl Med 2017; 32 (02) 110-117
  • 80 Suman S, Parghane RV, Joshi A. et al. Therapeutic efficacy, prognostic variables and clinical outcome of 177Lu-PSMA-617 PRLT in progressive mCRPC following multiple lines of treatment: prognostic implications of high FDG uptake on dual tracer PET-CT vis-à-vis Gleason score in such cohort. Br J Radiol 2019; 92 (1104): 20190380
  • 81 Goel R, Shukla J, Bansal D. et al. (68)Ga-DOTATATE positron emission tomography/computed tomography scan in the detection of bone metastases in pediatric neuroendocrine tumors. Indian J Nucl Med 2014; 29 (01) 13-17
  • 82 Jha A, Ling A, Millo C. et al. Superiority of 68Ga-DOTATATE over 18F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx )-related pheochromocytoma and paraganglioma in the pediatric population. Eur J Nucl Med Mol Imaging 2018; 45 (05) 787-797
  • 83 Maaz AUR, O'Doherty J, Djekidel M. 68Ga-DOTATATE PET/CT for neuroblastoma staging: utility for clinical use. J Nucl Med Technol 2021; 49 (03) 265-268