Synthesis 2022; 54(24): 5509-5519
DOI: 10.1055/s-0040-1720042
paper

DAST-Mediated Fluorination of 1-[4-Thio-β-d-arabinofuranosyl]uracil: Investigation of Thiolane vs Thietane Formation and Stereoselective Synthesis of 4′-ThioFAC

Kazuhiro Haraguchi
,
Noyori Hannda
,
Mizuki Wakasugi
,
Madoka Maruyama
,
Hirokazu Ishii
,
Daisuke Nagano
,
Hiroki Kumamoto
Financial support from the Japan Society for the Promotion of Science (KAKENHI No. 24590144 to K.H.) is gratefully acknowledged.


Abstract

The unprecedented DAST-mediated (DAST = diethylaminosulfur trifluoride) deoxygenative fluorination of benzoyl-, TBDPS-, and Bn-protected 1-(β-d-4-thioarabinofuranosyl)uracil at the sugar portion was examined. Three kinds of nucleoside (Ns) products were formed: target thiolane Ns, ring-contracted thietane Ns, and anhydro Ns products. The reaction pathway was determined by the electronic effect of the protecting groups at the sugar and base moieties. The benzoylated uracil starting material gave the 2,2′-anhydronucleoside (anhydro Ns) as a major product, whereas the silylated and benzylated starting materials furnished the corresponding fluorinated products, in which the ring-contracted thietanes predominantly formed. The desired thiolane Ns could be obtained as major product by the addition of a pyridine derivative as an additive. Upon reacting N 3-benzoylated 1-(β-d-4-thioarabinofuranosyl)uracil with DAST in the presence of 2,4,6-collidine, the target 2′-deoxy-2′-β-fluoro-4′-thiouracil nucleoside could be obtained in 72% isolated yield along with the corresponding thietane Ns (7%) and anhydro Ns (3%) (thiolane Ns/thietane Ns/anhydro Ns = 10.3:1.00:0.43), with recovery of the starting material (12%). In this study, the first stereoselective synthesis of the β-anomer of 1-(2-deoxy-2-fluoro-4-thio-β-d-arabino-pentofuranosyl)cytosine (4′-thioFAC) has been developed.

Supporting Information



Publication History

Received: 21 May 2022

Accepted after revision: 11 August 2022

Article published online:
23 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Huryn DM, Okabe M. Chem. Rev. 1992; 92: 1745
  • 2 Nucleosides and Nucleotides as Antitumor and Antiviral Agents. Chu CK, Baker DC. Plenum Press; New York: 1993
  • 3 Franchetti P, Grifantini M. Curr. Med. Chem. 1999; 6: 599
  • 4 Ichikawa E, Kato K. Curr. Med. Chem. 2001; 8: 385
  • 5 Nucleoside Mimetics: Their Chemistry and Biological Properties. Simons C. Gordon and Breach Science Publishers; ­Amsterdam: 2001
  • 6 Ichikawa E, Kato K. Synthesis 2002; 1
  • 7 Recent Advances in Nucleosides: Chemistry and Chemotherapy. Chu CK. Elsevier; Amsterdam: 2002
  • 8 Antiviral Nucleosides: Chemical Synthesis and Chemotherapy. Chu CK. Elsevier; Amsterdam: 2003
  • 9 Nucleoside Triphosphates and their Analogs: Chemistry, Biotechnology, and Biological Applications. Vaghefi M. Tayler & Francis; Boca Raton: 2005
  • 10 Lawton P. Expert. Opin. Ther. Pat. 2005; 15: 987
  • 11 Richardson SK, Howell AR, Taboada R. Org. Prep. Proced. Int. 2006; 38: 101
  • 12 Deoxynucleoside Analogs in Cancer Therapy. Peters GJ. Humana Press; New Jersey: 2006
  • 13 Modified Nucleosides in Biochemistry, Biotechnology and ­Medicine. Herdewijn P. Wiley-VCH; Weinheim: 2008
  • 14 Romeo G, Chiacchio U, Corsaro A, Merino P. Chem. Rev. 2010; 110: 3337
  • 15 Antiviral Drug Design. De Clercq E. Wiley-VCH; Weinheim: 2011
  • 16 Calenbergh SV, Pochet S, Munier-Lehman H. Curr. Top. Med. Chem. 2012; 12: 694
  • 17 Chemical Synthesis of Nucleoside Analogues. Merino P. John Wiley & Sons; Hoboken: 2013
  • 18 De Clercq E. Med. Res. Rev. 2013; 33: 1215
  • 19 Jordheim LP, Durantel D, Zoulim F, Dumontet C. Nat. Rev. Drug Discov. 2013; 12: 447
  • 20 De Clercq E, Li G. Clin. Microbiol. Rev. 2016; 29: 695
  • 21 Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Chem. Rev. 2016; 116: 14379
  • 22 Yokoyama M. Synthesis 2000; 1637
  • 23 Gunaga P, Moon H.-R, Choi W.-J, Shin D.-H, Park JG, Jeong LS. Curr. Med. Chem. 2004; 11: 2585
  • 24 Mulamoottil VA, Majik MS, Chandra G, Jeong LS. Chemical Synthesis of Nucleoside Analogues. Merino P. John Wiley & Sons; Hoboken: 2013: 655
  • 25 Rodrigues L, Tilve SG, Majik MS. Eur. J. Med. Chem. 2021; 224: 113659
  • 26 Haraguchi K, Kumamoto H, Tanaka H. Curr. Med. Chem. 2022; 29: 3684
    • 27a Yoshimura Y, Saitoh K, Ashida N, Sakata S. Bioorg. Med. Chem. Lett. 1994; 4: 721
    • 27b Yoshimura Y, Kitano K, Satoh H, Watanabe M, Miura S, Sakata S, Sasaki T, Matsuda A. J. Org. Chem. 1996; 61: 822
    • 27c Yoshimura Y, Kitano K, Yamada K, Sakata S, Miura S, Ashida N, Machida H, Matsuda A. Nucleic Acids Symp. Ser. 1997; 37: 43
    • 27d Yoshimura Y, Watanabe M, Saitoh H, Ashida N, Ijichi K, Sakata S, Machida H, Matsuda A. J. Med. Chem. 1997; 40: 2177
    • 27e Yoshimura Y, Kitano K, Yamada K, Satoh H, Watanabe M, Miura S, Sakata S, Sasaki T, Matsuda A. J. Org. Chem. 1997; 62: 3140
    • 27f Yoshimura Y, Endo M, Kitano K, Yamada K, Sakata S, Miura S, Machida H. Nucleosides Nucleotides 1999; 18: 815
    • 27g Yoshimura Y, Endo M, Sakata S. ­Tetrahedron Lett. 1999; 40: 1937
    • 27h Yoshimura Y, Endo M, Miura S, Sakata S. J. Org. Chem. 1999; 64: 7912
    • 27i Yoshimura Y, Kitano K, Yamada K, Sakata S, Miura S, Ashida N, Machida H. Bioorg. Med. Chem. 2000; 8: 1545
  • 28 Watts JK, Choubdar N, Sadalapure K, Robert F, Wahba AS, Pelletier J, Mario Pinto B, Damha MJ. Nucleic Acids Res. 2007; 35: 1441
  • 29 Haraguchi K, Kumamoto H, Konno K, Yagi H, Tatano Y, Odanaka Y, Matsubayashi S, Snoeck R, Andrei G. ­Tetrahedron 2019; 75: 4542
  • 30 Jeong LS, Nicklaus MC, George C, Marquez VE. ­Tetrahedron Lett. 1994; 35: 7569
  • 31 Haraguchi K, Takahashi H, Shiina N, Horii C, Yoshimura Y, Nishikawa A, Sasakura E, Nakamura KT, Tanaka H. J. Org. Chem. 2002; 67: 5919
  • 32 Miller JA, Pugh AW, Ullah GM. Nucleosides, Nucleotides Nucleic Acids 2000; 19: 1475
  • 33 Jeong LS, Tosh DK, Choi WJ, Lee SK, Kang Y.-J, Choi S, Lee JH, Lee H, Lee HW, Kim HK. J. Med. Chem. 2009; 52: 5303
  • 34 Watts JK, Sadalapure K, Choubdar N, Pinto BM, Damha MJ. J. Org. Chem. 2006; 71: 921