J Knee Surg 2021; 34(05): 570-580
DOI: 10.1055/s-0040-1713814
Original Article

Is There a Role of Meniscal Morphology in the Risk of Noncontact Anterior Cruciate Ligament Rupture? A Case–Control Study

Melih Unal
1   Department of Orthopedics and Traumatology, Antalya Education and Research Hospital, Antalya, Turkey
,
Ozkan Kose
1   Department of Orthopedics and Traumatology, Antalya Education and Research Hospital, Antalya, Turkey
,
Cemil Aktan
2   Orthopedics and Traumatology Clinic, Kahramankazan State Hospital, Ankara, Turkey
,
Gurkan Gumussuyu
3   Department of Orthopedics and Traumatology, Medical Park Bahcelievler Hospital, Istanbul, Turkey
,
Hasan May
1   Department of Orthopedics and Traumatology, Antalya Education and Research Hospital, Antalya, Turkey
,
Yusuf Alper Kati
1   Department of Orthopedics and Traumatology, Antalya Education and Research Hospital, Antalya, Turkey
› Author Affiliations
Funding None.

Abstract

The purpose of this study was to identify the anatomical risk factors and determine the role of meniscal morphology in noncontact anterior cruciate ligament (ACL) rupture. A total of 126 patients (63 with noncontact ACL rupture and 63 age- and sex-matched controls) with intact menisci were included in this retrospective case–control study. On knee magnetic resonance imaging (MRI), meniscal morphometry (anterior, corpus, and posterior heights and widths of each meniscus), tibial slope (medial and lateral separately), notch width index, roof inclination angle, anteromedial bony ridge, tibial eminence area, and Q-angle measurements were assessed. The data were analyzed using multiple regression analyses to identify independent risk factors associated with ACL rupture. Using a univariate analysis, medial and lateral menisci anterior horn heights (p < 0.001; p < 0.003), medial and lateral menisci posterior horn heights (p < 0.001; p < 0.001), lateral meniscus corpus width (p < 0.004), and notch width index (p < 0.001) were significantly higher in the control group. Lateral tibial slope (p < 0.001) and anteromedial bony ridge thickness (p < 0.001) were significantly higher in the ACL rupture group. Multivariate analysis revealed that decreased medial meniscus posterior horn height (odds ratio [OR]: 0.242; p < 0.001), increased lateral meniscus corpus width (OR: 2.118; p < 0.002), increased lateral tibial slope (OR: 1.95; p < 0.001), and decreased notch width index (OR: 0.071; p = 0.046) were independent risk factors for ACL rupture. Notch stenosis, increased lateral tibial slope, decreased medial meniscus posterior horn height, and increased lateral meniscus corpus width are independent anatomical risk factors for ACL rupture. Meniscal morphological variations also play a role in ACL injury. This is a Level III, retrospective case–control study.

Ethical Approval

Institutional Review Board approved the study protocol.




Publication History

Received: 10 December 2019

Accepted: 24 May 2020

Article published online:
13 July 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Webster KE, McPherson AL, Hewett TE, Feller JA. factors associated with a return to preinjury level of sport performance after anterior cruciate ligament reconstruction surgery. Am J Sports Med 2019; 47 (11) 2557-2562
  • 2 Thomeé R, Kaplan Y, Kvist J. et al. Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2011; 19 (11) 1798-1805
  • 3 Alentorn-Geli E, Myer GD, Silvers HJ. et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 2009; 17 (08) 859-879
  • 4 Williams JPG. Aetiologic classification of sports injuries. Br J Sports Med 1971; 4: 228-230
  • 5 Sturnick DR, Van Gorder R, Vacek PM. et al. Tibial articular cartilage and meniscus geometries combine to influence female risk of anterior cruciate ligament injury. J Orthop Res 2014; 32 (11) 1487-1494
  • 6 Levy IM, Torzilli PA, Gould JD, Warren RF. The effect of lateral meniscectomy on motion of the knee. J Bone Joint Surg Am 1989; 71 (03) 401-406
  • 7 Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Joint Surg Am 1982; 64 (06) 883-888
  • 8 Musahl V, Citak M, O'Loughlin PF, Choi D, Bedi A, Pearle AD. The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 2010; 38 (08) 1591-1597
  • 9 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33 (01) 159-174
  • 10 Erbagci H, Gumusburun E, Bayram M, Karakurum G, Sirikci A. The normal menisci: in vivo MRI measurements. Surg Radiol Anat 2004; 26 (01) 28-32
  • 11 Kızılgöz V, Sivrioğlu AK, Ulusoy GR, Aydın H, Karayol SS, Menderes U. Analysis of the risk factors for anterior cruciate ligament injury: an investigation of structural tendencies. Clin Imaging 2018; 50: 20-30
  • 12 Beaulieu ML, Wojtys EM, Ashton-Miller JA. Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings. Am J Sports Med 2015; 43 (09) 2233-2241
  • 13 Everhart JS, Flanigan DC, Simon RA, Chaudhari AM. Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 2010; 38 (08) 1667-1673
  • 14 Thompson WO, Thaete FL, Fu FH, Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991; 19 (03) 210-215 , discussion 215–216
  • 15 Sturnick DR, Vacek PM, DeSarno MJ. et al. Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 2015; 43 (04) 839-847
  • 16 Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM. A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 2010; 43 (09) 1702-1707
  • 17 Hashemi J, Chandrashekar N, Mansouri H. et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 2010; 38 (01) 54-62
  • 18 Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 2008; 16 (02) 112-117
  • 19 Schneider A, Arias C, Bankhead C, Gaillard R, Lustig S, Servien E. Greater medial tibial slope is associated with increased anterior tibial translation in females with an ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc 2020; 28 (06) 1901-1908
  • 20 Blanke F, Kiapour AM, Haenle M. et al. Risk of noncontact anterior cruciate ligament injuries is not associated with slope and concavity of the tibial plateau in recreational Alpine skiers: a magnetic resonance imaging-based case-control study of 121 patients. Am J Sports Med 2016; 44 (06) 1508-1514
  • 21 Marouane H, Shirazi-Adl A, Hashemi J. Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. J Biomech 2015; 48 (10) 1899-1905
  • 22 Zeng C, Cheng L, Wei J. et al. The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2014; 22 (01) 53-65
  • 23 Wang YL, Yang T, Zeng C. et al. Association between tibial plateau slopes and anterior cruciate ligament injury: a meta-analysis. Arthroscopy 2017; 33 (06) 1248-1259.e4
  • 24 Wordeman SC, Quatman CE, Kaeding CC, Hewett TE. In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 2012; 40 (07) 1673-1681
  • 25 Shelbourne KD, Facibene WA, Hunt JJ. Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 1997; 5 (04) 229-233
  • 26 Fung DT, Hendrix RW, Koh JL, Zhang LQ. ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 2007; 460 (460) 210-218
  • 27 Lombardo S, Sethi PM, Starkey C. Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. Am J Sports Med 2005; 33 (01) 29-34
  • 28 Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V. Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Joint Surg Am 2016; 98 (12) 1001-1006
  • 29 Al-Saeed O, Brown M, Athyal R, Sheikh M. Association of femoral intercondylar notch morphology, width index and the risk of anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013; 21 (03) 678-682
  • 30 Sonnery-Cottet B, Archbold P, Cucurulo T. et al. The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 2011; 93 (11) 1475-1478
  • 31 Hoteya K, Kato Y, Motojima S. et al. Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 2011; 131 (03) 371-376
  • 32 Lund-Hanssen H, Gannon J, Engebretsen L, Holen KJ, Anda S, Vatten L. Intercondylar notch width and the risk for anterior cruciate ligament rupture. A case-control study in 46 female handball players. Acta Orthop Scand 1994; 65 (05) 529-532
  • 33 Whitney DC, Sturnick DR, Vacek PM. et al. Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 2014; 42 (08) 1796-1805
  • 34 Sturnick DR, Argentieri EC, Vacek PM. et al. A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females. J Orthop Res 2014; 32 (11) 1451-1457
  • 35 Samora W, Beran MC, Parikh SN. Intercondylar roof inclination angle: is it a risk factor for ACL tears or tibial spine fractures?. J Pediatr Orthop 2016; 36 (06) e71-e74
  • 36 Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med 1992; 20 (02) 208-211
  • 37 Hertel J, Dorfman JH, Braham RA. Lower extremity malalignments and anterior cruciate ligament injury history. J Sports Sci Med 2004; 3 (04) 220-225
  • 38 Nguyen AD, Boling MC, Levine B, Shultz SJ. Relationships between lower extremity alignment and the quadriceps angle. Clin J Sport Med 2009; 19 (03) 201-206
  • 39 Griffin LY, Agel J, Albohm MJ. et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 2000; 8 (03) 141-150