Synthesis 2020; 52(18): 2689-2697
DOI: 10.1055/s-0040-1707147
paper
© Georg Thieme Verlag Stuttgart · New York

P(OEt)3-Mediated Formal S–H Insertion: Reductive Couplings of Isatins with Thiols to Generate 3-Sulfenylated Oxindoles

Tiao Huang
a   Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. of China   Email: wmsh@hainnu.edu.cn
,
Li Liu
a   Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. of China   Email: wmsh@hainnu.edu.cn
,
Qinghe Wang
a   Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. of China   Email: wmsh@hainnu.edu.cn
,
Dulin Kong
b   School of Pharmaceutical Sciences, Hainan Medical University, Haikou 571199, Hainan Province, P. R. of China   Email: kongdulin@126.com
,
Mingshu Wu
a   Key Laboratory of Tropical Medicinal Plant Chemistry of the Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan Province, P. R. of China   Email: wmsh@hainnu.edu.cn
› Author Affiliations
This work was supported by Natural Science Foundation of Hainan Province (2019RC215) and Graduate Innovative Research Project of Hainan Normal University (Hsyx2018-25).
Further Information

Publication History

Received: 14 April 2020

Accepted after revision: 20 May 2020

Publication Date:
10 June 2020 (online)


Abstract

A new P(OEt)3-mediated formal S–H bond-insertion reaction of isatins into thiols for the synthesis of valuable 3-sulfenylation oxindoles has been developed. This approach takes advantage of the unique reactivity of Kukhtin–Ramirez adducts to allow direct reductive S–H functionalization with commercially available and bench-stable starting materials.

Supporting Information

 
  • References

    • 1a Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 1b Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 1c Camasso NM, Sanford MS. Science 2015; 347: 1218
    • 2a Zhao X, Shen J, Jiang Z.-Y. Mini-Rev. Org. Chem. 2014; 11: 424
    • 2b Xu B, Zhu S.-F, Ding P.-G, Hu X.-S, Zhou F, Zhou J. ACS Catal. 2016; 6: 5319
    • 2c Dalpozzo R. Org. Chem. Front. 2017; 4: 2063
    • 3a Mehta RG, Liu J, Constantinou A, Hawthorne M, Pezzuto JM, Moon RC, Moriarty RM. Anticancer Res. 1994; 14: 1209
    • 3b Bertamino A, Soprano M, Musella S, Rusciano MR, Sala M, Vernieri E, Di Sarno V, Limatola A, Carotenuto A, Cosconati S. J. Med. Chem. 2013; 56: 5407
  • 4 Pedras MS. C, Hossain M. Org. Biomol. Chem. 2006; 4: 2581
  • 5 Dandia A, Sati M, Arya K, Sharma R, Loupy A. Chem. Pharm. Bull. 2003; 51: 1137
    • 6a Emer E, Sinisi R, Capdevila MG, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 6b Zhu F, Zhou F, Cao ZY, Wang C, Zhang YX, Wang CH, Zhou J. Synthesis 2012; 44: 3129
    • 6c Liu XW, Han WY, Liu XL, Zhou Y, Zhang XM, Yuan WC. Tetrahedron 2014; 70: 9191
    • 6d Gualandi A, Rodeghiero G, Cozzi PG. Asian J. Org. Chem. 2018; 7: 1957
    • 6e Liu X.-L, Yue J, Chen S, Liu H.-H, Yang K.-M, Feng T.-T, Zhou Y. Org. Chem. Front. 2019; 6: 256
    • 7a Li X, Liu C, Xue XS, Cheng JP. Org. Lett. 2012; 14: 4374
    • 7b Cai Y, Li J, Chen W, Xie M, Liu X, Lin L, Feng X. Org. Lett. 2012; 14: 2726
    • 7c Wang C, Yang X, Loh CC. J, Raabe G, Enders D. Chem. Eur. J. 2012; 18: 11531
    • 7d Huang L, Li J, Zhao Y, Ye X, Liu Y, Yan L, Tan C.-H, Liu H, Jiang Z. J. Org. Chem. 2015; 80: 8933
    • 7e You Y, Wu Z.-J, Wang Z.-H, Xu X.-Y, Zhang X.-M, Yuan W.-C. J. Org. Chem. 2015; 80: 8470
    • 7f Yidan E, Yuan T, Yin L, Xu Y. Tetrahedron Lett. 2017; 58: 2521
  • 8 Huang L.-S, Han D.-Y, Xu D.-Z. Adv. Synth. Catal. 2019; 361: 4016
    • 9a Li Y, Shi Y, Huang Z, Wu X, Xu P, Wang J, Zhang Y. Org. Lett. 2011; 13: 1210
    • 9b Khanal HD, Kim SH, Lee YR. RSC Adv. 2016; 6: 58501
    • 10a Yates P. J. Am. Chem. Soc. 1952; 74: 5376
    • 10b Moyer MP, Feldman PL, Rapoport H. J. Org. Chem. 1985; 50: 5223
    • 10c Bachmann S, Fielenbach D, Jørgensen KA. Org. Biomol. Chem. 2004; 2: 3044
    • 10d Maier TC, Fu GC. J. Am. Chem. Soc. 2006; 128: 4594
    • 10e Chen C, Zhu S.-F, Liu B, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 12616
    • 10f Lee EC, Fu GC. J. Am. Chem. Soc. 2007; 129: 12066
    • 10g Liu B, Zhu S.-F, Zhang W, Chen C, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 5834
    • 10h Zhu SF, Chen C, Cai Y, Zhou QL. Angew. Chem. Int. Ed. 2008; 47: 932
    • 10i Xu B, Zhu SF, Xie XL, Shen JJ, Zhou QL. Angew. Chem. Int. Ed. 2011; 50: 11483
    • 10j Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 10k Harada S, Tanikawa K, Homma H, Sakai C, Ito T, Nemoto T. Chem. Eur. J. 2019; 25: 12058
    • 11a Ramirez F, Desai NB. J. Am. Chem. Soc. 1960; 82: 2652
    • 11b Corey E, Winter RA. J. Am. Chem. Soc. 1963; 85: 2677
    • 11c Horton D, Tindall CG. Jr. J. Org. Chem. 1970; 35: 3558
    • 11d Osman FH, El-Samahy FA. Chem. Rev. 2002; 102: 629
    • 11e Block E. Org. React. 2004; 30: 457
    • 12a Miller EJ, Zhao W, Herr JD, Radosevich AT. Angew. Chem. Int. Ed. 2012; 51: 10605
    • 12b Zhao W, Yan PK, Radosevich AT. J. Am. Chem. Soc. 2015; 137: 616
  • 13 CCDC 1912827 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 14a Zhou R, Liu R, Zhang K, Han L, Zhang H, Gao W, Li R. Chem. Commun. 2017; 53: 6860
    • 14b Zhang L, Lu H, Xu GQ, Wang ZY, Xu PF. J. Org. Chem. 2017; 82: 5782