CC BY 4.0 · Rev Bras Ginecol Obstet 2020; 42(01): 043-050
DOI: 10.1055/s-0040-1701460
Original Article
Basic and Translational Science
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

The Effect of Testosterone Replacement on Intramedullary, Inguinal and Visceral Fat in Ovariectomized Rats

Efeito da reposição de testosterona na gordura intramedular, inguinal e visceral em ratas ovariectomizadas
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
2   Instituto Médico Legal, São Paulo, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
,
1   Discipline of Pathology, Faculdade de Medicina do ABC, Santo André, SP, Brazil
› Author Affiliations
Further Information

Publication History

06 December 2018

22 November 2019

Publication Date:
27 February 2020 (online)

Abstract

Objective The present article aims to evaluate the impact of testosterone treatment on the expansion of visceral, subcutaneous and intramedullary adipose tissue of ovariectomized rats and the visceral and subcutaneous fat expression of peroxisome proliferator-activated receptors (PPARs) gamma.

Methods In total 48 female Wistar rats were castrated and randomly divided into 6 treatment groups: group E2 was submitted to estradiol 5 μg/day; group T, to testosterone 5 μg/day; group E2 + T, to estradiol 5 μg/day + testosterone 5 μg/day; group TT, to testosterone 30 μg/day; group E2 + TT, to estradiol 5 μg/day + testosterone 30 μg/day; and placebo was administered to group P. After 5 weeks, the rats were euthanized, the inguinal and visceral adipose tissues were harvested, weighted, and had their PPAR gamma expression evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). The right femurs were harvested and histologically prepared to perform the number count of the intramedullary adipocytes.

Results The expansion of visceral fat tissue was much higher in the TT group when compared with other treated groups (p < 0.001). The TT group also showed a higher expansion of inguinal fat (p < 0.01), and groups E2 + T and E2 + TT presented lower growth compared to the P group (p < 0.01). The number of femur intramedullary adipocytes only showed significant differences between groups TT and E2 + TT (p < 0.05). The expression of PPAR gamma showed no differences among the groups.

Conclusion The use of testosterone in high doses leads to an important expansion in both visceral and inguinal adipose tissues. Association with estradiol exerts an expansion-repressive effect on the visceral and inguinal adipose tissues.

Resumo

Objetivo Este artigo tem como objetivo avaliar o impacto do tratamento com testosterona na expansão dos tecidos adiposos visceral, subcutâneo e intramedular de ratas ovariectomizadas e a expressão de receptores ativados por proliferadores de peroxissoma (RAPPs) gama nas gorduras visceral e subcutânea.

Métodos No total, 48 ratas Wistar foram castradas e divididas aleatoriamente em 6 grupos de tratamento: o grupo E2 recebeu estradiol 5 μg/dia; o grupo T, testosterona 5 μg/dia; o grupo E2 + T, estradiol 5 μg/dia + testosterona 5 μg/dia; o grupo TT, testosterona 30 μg/dia; o grupo E2 + TT, estradiol 5 μg/dia + testosterona 30 μg/dia; e o grupo P recebeu placebo. Após 5 semanas, as ratas foram submetidas a eutanásia, o tecido adiposo inguinal e visceral foi coletado, pesado, e se avaliou a expressão dos RAPP gama por reação em cadeia da polimerase via transcriptase reversa quantitativa (RCP-TRq). Os ossos do fêmur direito foram colhidos e processados histologicamente para contagem de números de adipócitos intramedulares.

Resultados A expansão do tecido adiposo visceral foi muito maior no grupo TT quando comparado a outros grupos tratados (p < 0,001). O grupo TT também apresentou maior expansão da gordura inguinal (p < 0,01), e os grupos E2 + T e E2 + TT apresentaram menor crescimento em relação ao grupo P (p < 0,01). O número de adipócitos intramedulares no fêmur mostrou apenas diferenças significativas entre os grupos TT e E2 + TT (p < 0,05). A expressão de RAPP gama não mostrou diferenças entre os grupos.

Conclusão O uso de testosterona em altas doses leva a uma importante expansão nos tecidos adiposos visceral e inguinal. A associação com o estradiol exerce um efeito repressivo de expansão nos tecidos adiposos visceral e inguinal.

Contributors

All of the authors contributed with the project and data interpretation, the writing of the article, the critical review of the intellectual content, and with the final approval of the version to be published.


 
  • References

  • 1 Hirschberg AL. Sex hormones, appetite and eating behaviour in women. Maturitas 2012; 71 (03) 248-256 . doi: 10.1016/j.maturitas.2011.12.016
  • 2 Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes 2008; 32 (06) 949-958 . doi: 10.1038/ijo.2008.25
  • 3 Douchi T, Yamamoto S, Nakamura S, Ijuin T, Oki T, Maruta K. , et al. The effect of menopause on regional and total body lean mass. Maturitas 1998; 29 (03) 247-252 . doi: 10.1016/s0378-5122(98)00035-8
  • 4 Zsakai A, Karkus Z, Utczas K, Biri B, Sievert LL, Bodzsar EB. Body fatness and endogenous sex hormones in the menopausal transition. Maturitas 2016; 87: 18-26 . doi: 10.1016/j.maturitas.2016.02.006
  • 5 Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O. , et al. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012; 153 (07) 3100-3110 . doi: 10.1210/en.2011-2111
  • 6 Blüher M. Importance of estrogen receptors in adipose tissue function. Mol Metab 2013; 2 (03) 130-132 . doi: 10.1016/j.molmet.2013.07.001
  • 7 Dieudonne MN, Pecquery R, Boumediene A, Leneveu MC, Giudicelli Y. Androgen receptors in human preadipocytes and adipocytes: regional specificities and regulation by sex steroids. Am J Physiol 1998; 274 (06) C1645-C1652 . doi: 10.1152/ajpcell.1998.274.6.C1645
  • 8 Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction 2017; 153 (04) R133-R149 . doi: 10.1530/REP-16-0417
  • 9 Chen Z, Bassford T, Green SB, Cauley JA, Jackson RD, LaCroix AZ. , et al. Postmenopausal hormone therapy and body composition--a substudy of the estrogen plus progestin trial of the Women's Health Initiative. Am J Clin Nutr 2005; 82 (03) 651-656 . doi: 10.1093/ajcn.82.3.651
  • 10 Papadakis GE, Hans D, Rodriguez EG, Vollenweider P, Waeber G, Marques-Vidal P. , et al. Menopausal hormone therapy is associated with reduced total and visceral adiposity: the OsteoLaus Cohort. J Clin Endocrinol Metab 2018; 103 (05) 1948-1957 . doi: 10.1210/jc.2017-02449
  • 11 Manson JE, Aragaki AK, Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ. , et al. Menopausal hormone therapy and long-term all-cause and cause-specific mortality: The Women's Health Initiative Randomized Trials. JAMA 2017; 318 (10) 927-938 . doi: 10.1001/jama.2017.11217
  • 12 Gartlehner G, Patel SV, Feltner C, Weber RP, Long R, Mullican K. , et al. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: evidence report and systematic review for the US Preventive Services Task Force. JAMA 2017; 318 (22) 2234-2249 . doi: 10.1001/jama.2017.16952
  • 13 Leão LM, Duarte MP, Silva DM, Bahia PR, Coeli CM, de Farias ML. Influence of methyltestosterone postmenopausal therapy on plasma lipids, inflammatory factors, glucose metabolism and visceral fat: a randomized study. Eur J Endocrinol 2006; 154 (01) 131-139 . doi: 10.1530/eje.1.02065
  • 14 Davis SR, Walker KZ, Strauss BJ. Effects of estradiol with and without testosterone on body composition and relationships with lipids in postmenopausal women. Menopause 2000; 7 (06) 395-401
  • 15 Fonseca Junior NL, Petri G, Veridiano JM, Rehder JRCL. Alteração do tecido conjuntivo orbitário após aplicação de bimatoprost: estudo experimental em ratos. Rev Bras Oftalmol 2016; 75 (04) 300-307 . doi: 10.5935/0034-7280.20160060
  • 16 Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the metabolic syndrome: the Study of Women's Health Across the Nation. Arch Intern Med 2008; 168 (14) 1568-1575 . doi: 10.1001/archinte.168.14.1568
  • 17 Guthrie JR, Dennerstein L, Taffe JR, Ebeling PR, Randolph JF, Burger HG. , et al. Central abdominal fat and endogenous hormones during the menopausal transition. Fertil Steril 2003; 79 (06) 1335-1340 . doi: 10.1016/s0015-0282(03)00361-3
  • 18 Janssen I, Powell LH, Kazlauskaite R, Dugan SA. Testosterone and visceral fat in midlife women: the Study of Women's Health Across the Nation (SWAN) fat patterning study. Obesity (Silver Spring) 2010; 18 (03) 604-610 . doi: 10.1038/oby.2009.251
  • 19 Lovejoy JC, Bray GA, Bourgeois MO, Macchiavelli R, Rood JC, Greeson C. , et al. Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women--a clinical research center study. J Clin Endocrinol Metab 1996; 81 (06) 2198-2203 . doi: 10.1210/jcem.81.6.8964851
  • 20 Huang G, Basaria S, Travison TG, Ho MH, Davda M, Mazer NA. , et al. Testosterone dose-response relationships in hysterectomized women with or without oophorectomy: effects on sexual function, body composition, muscle performance and physical function in a randomized trial. Menopause 2014; 21 (06) 612-623 . doi: 10.1097/GME.0000000000000093
  • 21 Zang H, Rydén M, Wåhlen K, Dahlman-Wright K, Arner P, Lindén Hirschberg A. Effects of testosterone and estrogen treatment on lipolysis signaling pathways in subcutaneous adipose tissue of postmenopausal women. Fertil Steril 2007; 88 (01) 100-106 . doi: 10.1016/j.fertnstert.2006.11.088
  • 22 Zang H, Carlström K, Arner P, Hirschberg AL. Effects of treatment with testosterone alone or in combination with estrogen on insulin sensitivity in postmenopausal women. Fertil Steril 2006; 86 (01) 136-144 . doi: 10.1016/j.fertnstert.2005.12.039
  • 23 Nohara K, Laque A, Allard C, Münzberg H, Mauvais-Jarvis F. Central mechanisms of adiposity in adult female mice with androgen excess. Obesity (Silver Spring) 2014; 22 (06) 1477-1484 . doi: 10.1002/oby.20719
  • 24 Iwasa T, Matsuzaki T, Tungalagsuvd A, Munkhzaya M, Yiliyasi M, Kato T. , et al. Effects of chronic testosterone administration on body weight and food intake differ among pre-pubertal, gonadal-intact, and ovariectomized female rats. Behav Brain Res 2016; 309: 35-43 . doi: 10.1016/j.bbr.2016.04.048
  • 25 Iwasa T, Matsuzaki T, Yiliyasi M, Yano K, Irahara M. The effects of chronic testosterone administration on body weight, food intake, and fat weight were age-dependent. Steroids 2017; 127: 18-23 . doi: 10.1016/j.steroids.2017.08.014
  • 26 Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ. , et al. Marrow fat and bone–new perspectives. J Clin Endocrinol Metab 2013; 98 (03) 935-945 . doi: 10.1210/jc.2012-3634
  • 27 Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H. , et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 2014; 20 (02) 368-375 . doi: 10.1016/j.cmet.2014.06.003
  • 28 Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab 2016; 27 (06) 392-403 . doi: 10.1016/j.tem.2016.03.016
  • 29 Scheller EL, Troiano N, Vanhoutan JN, Bouxsein MA, Fretz JA, Xi Y. , et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol 2014; 537: 123-139 . doi: 10.1016/B978-0-12-411619-1.00007-0
  • 30 Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M. , et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19 (05) 557-566 . doi: 10.1038/nm.3159
  • 31 Jeong S, Yoon M. 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol Sin 2011; 32 (02) 230-238 . doi: 10.1038/aps.2010.198
  • 32 Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis 2014; 233 (01) 104-112 . doi: 10.1016/j.atherosclerosis.2013.12.023
  • 33 Nagy ZS, Czimmerer Z, Szanto A, Nagy L. Pro-inflammatory cytokines negatively regulate PPARγ mediated gene expression in both human and murine macrophages via multiple mechanisms. Immunobiology 2013; 218 (11) 1336-1344 . doi: 10.1016/j.imbio.2013.06.011
  • 34 Ye J. Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun 2008; 374 (03) 405-408 . doi: 10.1016/j.bbrc.2008.07.068