Synlett 2018; 29(13): 1753-1758
DOI: 10.1055/s-0037-1610454
letter
© Georg Thieme Verlag Stuttgart · New York

A Straightforward Access to Trifluoromethylated Spirobipyrazolines through a Double (3+2)-Cycloaddition of Fluorinated Nitrile Imines with Alkoxyallenes

Greta Utecht
,
Grzegorz Mlostoń
,
Marcin Jasiński*
The authors thank the National Science Center (NCN, Poland) for ­financial support in the framework of Preludium grant #2016/21/N/ST5/01254.
Further Information

Publication History

Received: 24 April 2018

Accepted after revision: 29 May 2018

Publication Date:
02 July 2018 (online)


Dedicated to Professor Janusz Zakrzewski (University of Łódź) on the occasion of his 70th birthday

Abstract

Formal double (3+2)-cycloaddition of in situ generated tri­fluoroacetonitrile imines with alkoxyallenes proceeds in a highly regio- and diastereoselective manner to afford anti-configured spirobipyrazolines as the exclusive 2:1 adducts. Initial stepwise addition of the title electron-deficient 1,3-dipoles onto cumulenic reaction partner is pos­tulated to explain the observed reaction pathway.

Supporting Information

 
  • References and Notes


    • For selected examples of bioactive CF3-pyrazoles, see:
    • 1a Lahm GP. Selby TP. Freudenberger JH. Stevenson TM. Myers BJ. Seburyamo G. Smith BK. Flexner L. Clark CE. Cordova D. Bioorg. Med. Chem. Lett. 2005; 15: 4898
    • 1b Lee E. Choi MK. Youk HJ. Kim CH. Han IC. Yoo BC. Lee MK. Lim SJ. J. Cancer Res. Clin. Oncol. 2006; 132: 232
    • 1c Sun A. Chandrakumar N. Yoon J.-J. Plemper RK. Snyder JP. Bioorg. Med. Chem. Lett. 2007; 17: 5199
    • 1d Varnes JG. Wacker DA. Pinto DJ. P. Orwat MJ. Theroff JP. Wells B. Galemo RA. Luegetten JM. Knabb RM. Bai S. He K. Lam PY. S. Wexler RR. Bioorg. Med. Chem. Lett. 2008; 18: 749
    • 1e Cox SR. Lesman SP. Boucher JF. Krautmann MJ. Hummel BD. Savides M. Marsh S. Fielder A. Stegamann MR. J. Vet. Pharmacol. Ther. 2010; 33: 461
    • 1f Nakatani M. Yamaji Y. Honda H. Uchida Y. J. Pestic. Sci. 2016; 41: 107

    • See also:
    • 1g Lamberth C. Heterocycles 2007; 71: 1467
    • 1h Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley and Sons; Hoboken, NJ: 2008
    • 1i Fustero S. Sánchez-Roselló M. Barrio P. Simón-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 1j Karrouchi K. Radi S. Ramli Y. Taoufik J. Mabkhot YN. Al-aizari FA. Ansar M. Molecules 2018; 23: 134

      For synthetic methods towards trifluoromethylpyrazolines, see:
    • 2a Aggarwal R. Bansal A. Rozas I. Kelly B. Kaushik P. Kaushik D. Eur. J. Med. Chem. 2013; 70: 350
    • 2b Zhang F.-G. Wei Y. Yi Y.-P. Nie J. Ma J.-A. Org. Lett. 2014; 16: 3122
    • 2c Slobodyanyuk EY. Artamonov OS. Shishkin OV. Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
    • 2d Lobo MM. Oliveira SM. Brusco I. Machado P. Timmers LF. S. M. de Souza ON. Martins MA. P. Bonacorso HG. dos SantosJ. M. Canova B. da Silva TV. F. Zanatta N. Eur. J. Med. Chem. 2015; 102: 143
    • 2e Wang Z. Yang Y. Gao F. Wang Z. Luo Q. Fang L. Org. Lett. 2018; 20: 934
    • 3a Cunico W. Cechinel CA. Bonacorso HG. Martins MA. P. Zanatta N. de Souza MV. N. Freitas IO. Soares RP. P. Krettli AU. Bioorg. Med. Chem. Lett. 2006; 16: 649
    • 3b Zhang X. Li X. Allan GF. Sbriscia T. Linton O. Lundeen SG. Sui Z. J. Med. Chem. 2007; 50: 3857
    • 3c Reddy MV. R. Billa VK. Pallela VR. Mallireddigari MR. Boominathan R. Gabriel JL. Reddy EP. Bioorg. Med. Chem. 2008; 16: 3907
    • 4a Marella A. Ali MR. Alam MT. Saha R. Tanwar O. Akhter M. Shaquiquzzaman M. Alam MM. Mini-Rev. Med. Chem. 2013; 13: 921
    • 4b Monteiro Â. Gonçalves LM. Santos MM. M. Eur. J. Med. Chem. 2014; 79: 266
    • 4c Huang QP. Zhang SN. Zhang SH. Wang K. Xiao Y. Molecules 2017; 22: 1813
    • 5a Foti F. Grassi G. Risitano F. Nicolò F. Rotondo A. Helv. Chim. Acta 2001; 84: 3313
    • 5b Bruno G. Nicolò F. Rotondo A. Foti F. Risitano F. Grassi G. Acta Crystallogr., Sect. C: Cryst. Struct. Chem. 2004; 60: 879
    • 5c Liu H. Jia H. Wang B. Xiao Y. Guo H. Org. Lett. 2017; 19: 4714
  • 6 Dadiboyena S. Eur. J. Med. Chem. 2013; 63: 347
  • 7 Battioni P. Vo-Quang L. Vo-Quang Y. Bull. Soc. Chim. Fr. 1978; II: 415
    • 8a Kowalski MK. Mlostoń G. Obijalska E. Linden A. Heimgartner H. Tetrahedron 2016; 72: 5305
    • 8b Mlostoń G. Kowalski MK. Obijalska E. Heimgartner H. J. Fluorine Chem. 2017; 199: 92
    • 8c Mlostoń G. Urbaniak K. Utecht G. Lentz D. Jasiński M. J. Fluorine Chem. 2016; 192: 147
    • 9a Utecht G. Sioma J. Jasiński M. Mlostoń G. J. Fluorine Chem. 2017; 201: 68
    • 9b Grzelak P. Utecht G. Jasiński M. Mlostoń G. Synthesis 2017; 49: 2129
    • 9c Utecht G. Fruziński A. Jasiński M. Org. Biomol. Chem. 2018; 16: 1252
  • 10 Wojciechowska A. Jasiński M. Kaszyński P. Tetrahedron 2015; 71: 2349
  • 11 Representative Procedure To a mixture of bromide 4a (616 mg, 2.2 mmol) and methoxyallene (2a, 70 mg, 1.0 mmol) in dry toluene (4.0 mL) was added dropwise Et3N (90 μL) within ca. 10 min, and the resulting mixture was stirred at room temperature for 72 h. After Et2O (5 mL) was added, and the precipitate trimethylamine hydrobromide was filtered off, the organics were washed with H2O (2 × 15 mL), dried over Na2SO4, and the solvents were removed in vacuo. Purification by flash column chromatography (SiO2, PE/CH2Cl2 = 4:1) provided analytically pure 3a (230 mg, 49%, first eluted) and a second fraction containing mixture of 5a and 6a (58 mg, second eluted). Data for 3a Pale yellow oil. 1H NMR (CDCl3, 600 MHz): δ = 2.23, 2.34 (2 s, 3 H each, 2 CH3), 3.26 (s, 3 H, OCH3), 3.39, 3.86 (2 dbr, J = 18.7 Hz, 1 H each, 4-H2), 5.60 (s, 1 H, 9-H), 6.83, 6.98 (2 dbr, J = 8.5 Hz, 2 H each), 7.12, 7.16 (2 dbr, J = 8.6 Hz, 2 H each) ppm. 13C NMR (CDCl3, 151 MHz): δ = 20.6, 20.7 (2 q, 2 CH3), 33.6 (t, C-4), 54.9 (q, OCH3), 81.2 (s, C-5), 95.1 (d, C-9), 115.0, 117.7 (2 d, 4 CH, Tol), 120.4 (q, 1 J C–F = 269.3 Hz, CF3), 120.6 (q, 1 J C–F = 271.2 Hz, CF3), 129.8, 130.0 (2 d, 4 CH, Tol), 132.9, 133.8 (2 s, 2 i-C, Tol), 136.1 (q, 2 J C–F = 36.5 Hz, C-6), 137.1 (q, 2 J C–F = 38.8 Hz, C-3), 138.6, 138.8 (2 s, 2 i-C, Tol) ppm. 19F NMR (CDCl3, 188 MHz): δ = –66.8, –62.3 (2 s, 2 CF3) ppm. IR (film): ν = 1518, 1277, 1193, 1130, 1065, 760 cm–1. ESI-MS: m/z = 471.2 (100) [M + H]+. Anal. Calcd for C22H20N4F6O: C, 56.17; H, 4.29; N, 11.91. Found: C, 56.33; H, 4.24; N, 11.77. For analytical data of 5a and 6a, see Supporting Information.
  • 12 Estimated based on 1H NMR spectra of the crude reaction mixtures.
  • 13 CCDC-1838593 contains the supplementary crystallographic data for 3b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/getstructures.
    • 14a Msaddek M. Rammah M. Ciamala K. Vebrel J. Laude B. Synthesis 1997; 1495
    • 14b Farag AM. Elkholy YM. Ali KA. J. Heterocycl. Chem. 2008; 45: 279
    • 14c Wang G. Liu X. Huang T. Kuang Y. Lin L. Feng X. Org. Lett. 2013; 15: 76
  • 15 Pinho e Melo TM. V. D. Curr. Org. Chem. 2009; 13: 1406
  • 16 Zimmer R. Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
    • 17a Padwa A. Bullock WH. Kline DN. Perumattam J. J. Org. Chem. 1989; 54: 2862
    • 17b Padwa A. Meske M. Ni Z. Tetrahedron Lett. 1993; 34: 5047
    • 17c Dugovič B. Fišera L. Reissig H.-U. Eur. J. Org. Chem. 2008; 277
    • 18a Schade W. Reissig H.-U. Synlett 1999; 632
    • 18b Helms M. Schade W. Pulz R. Watanabe T. Al-Harrasi A. Fišera L. Hlobilová I. Zahn G. Reissig H.-U. Eur. J. Org. Chem. 2005; 1003
    • 18c Jasiński M. Utecht G. Fruziński A. Reissig H.-U. Synthesis 2016; 48: 893
  • 19 For similar double (3+2)-cycloaddition strategy recently applied in the synthesis of spirobiisoxazolines using allenoates and nitrile oxides, see: Shang X. Liu K. Zhang Z. Xu X. Li P. Li W. Org. Biomol. Chem. 2018; 16: 895
    • 20a Mizuno A. Umemura K. Nakashima M. Gen. Pharmacol. 1998; 30: 575
    • 20b Yoshida H. Yanai H. Namiki Y. Fukatsu-Sasaki K. Furutani N. Tada N. CNS Drug Rev. 2006; 12: 9
    • 20c Sheng X. Hua K. Yang C. Wang X. Ji H. Xu J. Huang Z. Zhang Y. Bioorg. Med. Chem. Lett. 2015; 25: 3535
    • 20d Lipunova GN. Nosova EV. Charushin VN. Chupakhin ON. J. Fluorine Chem. 2015; 175: 84