Synthesis 2018; 50(23): 4617-4626
DOI: 10.1055/s-0037-1610252
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient and Versatile Catalytic Systems for the N-Methylation of Primary Amines with Methanol Catalyzed by N-Heterocyclic Carbene Complexes of Iridium

Genki Toyooka
,
Akiko Tuji
,
Ken-ichi Fujita*
Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan   Email: fujita.kenichi.6a@kyoto-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Number JP16H01018 and JP18H04255 in Precisely Designed Catalysts with Customized Scaffolding and Nagase Science and Technology Foundation.
Further Information

Publication History

Received: 25 May 2018

Accepted after revision: 25 July 2018

Publication Date:
30 August 2018 (online)


Abstract

Efficient and versatile catalytic systems were developed for the N-methylation of both aliphatic and aromatic primary amines using methanol as the methylating agent. Iridium complexes bearing an N-heterocyclic carbene (NHC) ligand exhibited high catalytic performance for this type of transformation. For aliphatic amines, selective N,N-dimethylation was achieved at low temperatures (50–90 °C). For aromatic amines, selective N-monomethylation and selective N,N-dimethylation were accomplished by simply changing the reaction conditions (presence or absence of a base with an appropriate catalyst). These findings can be used to develop methods for synthesizing useful amine compounds having N-methyl or N,N-dimethyl moieties.

Supporting Information

 
  • References

    • 1a Barreiro EJ. Kümmerle AE. Fraga CA. M. Chem. Rev. 2011; 111: 5215
    • 1b Kanokmedhakul K. Kanokmedhakul S. Suwannatrai R. Soytong K. Prabpai S. Kongsaeree P. Tetrahedron 2011; 67: 5461
    • 1c Aoki S. Watanabe Y. Sanagawa M. Setiawan A. Kotoku N. Kobayashi M. J. Am. Chem. Soc. 2006; 128: 3148
    • 1d Fiala C. Gemzell-Danielsson K. Contraception 2006; 74: 66
    • 1e Roth FE. Chemotherapia 1961; 3: 120
    • 2a Chiappe C. Piccioli P. Pieraccini D. Green Chem. 2006; 8: 277
    • 2b Prashad M. Har D. Hu B. Kim H.-Y. Repic O. Blacklock TJ. Org. Lett. 2003; 5: 125
  • 3 March J. Advanced Organic Chemistry . Wiley; New York: 1985. 3rd ed. 798
    • 4a Liang R. Li S. Wang R. Lu L. Li F. Org. Lett. 2017; 19: 5790
    • 4b Liu Z. Yang Z. Yu X. Zhang H. Yu B. Zhao Y. Liu Z. Adv. Synth. Catal. 2017; 359: 4278
    • 4c Paul B. Shee S. Chakrabarti K. Kundu S. ChemSusChem 2017; 10: 2370
    • 4d Dang TT. Ramalingam B. Seayad AM. ACS Catal. 2015; 5: 4082
    • 4e Andrushko N. Andrushko V. Roose P. Moonen K. Börner A. ChemCatChem 2010; 2: 640
    • 4f Zotto AD. Baratta W. Sandri M. Verardo G. Rigo P. Eur. J. Inorg. Chem. 2004; 524
    • 4g Arcelli A. Khai B.-T. Porzi G. J. Organomet. Chem. 1982; 235: 93
    • 5a Choi G. Hong SH. Angew. Chem. Int. Ed. 2018; 57: 6166
    • 5b Chen J. Wu J. Tu T. ACS Sustainable Chem. Eng. 2017; 5: 11744
    • 5c Bruneau-Voisine A. Wang D. Dorcet V. Roisnel T. Darcel C. Sortais J.-B. J. Catal. 2017; 347: 57
    • 5d Oikawa K. Itoh S. Yano H. Kawasaki H. Obora Y. Chem. Commun. 2017; 53: 1080
    • 5e Neumann J. Elangovan S. Spannenberg A. Junge K. Beller M. Chem. Eur. J. 2017; 23: 5410
    • 5f Elangovan S. Neumann J. Sortais J.-B. Junge K. Darcel C. Beller M. Nat. Commun. 2016; 7: 12641
    • 5g Broomfield LM. Wu Y. Martin E. Shafir A. Adv. Synth. Catal. 2015; 357: 3538
    • 5h Campos J. Sharninghausen LS. Manas MG. Crabtree RH. Inorg. Chem. 2015; 54: 5079
    • 5i Li F. Xie J. Shan H. Sun C. Chen L. RSC. Adv. 2012; 2: 8645
    • 5j Bertoli M. Choualeb A. Lough AJ. Moore B. Spasyuk D. Gusev DG. Organometallics 2011; 30: 3479
    • 6a Du Y. Oishi S. Saito S. Chem. Eur. J. 2011; 17: 12262
    • 6b Zhao Y. Foo SW. Saito S. Angew. Chem. Int. Ed. 2011; 50: 3006
    • 6c Huh K.-T. Tsuji Y. Kobayashi M. Okuda F. Watanabe Y. Chem. Lett. 1988; 449
    • 7a Fujita K. Fujii T. Yamaguchi R. Org. Lett. 2004; 6: 3525
    • 7b Fujita K. Yamaguchi R. Synlett 2005; 560
    • 7c Fujita K. Enoki Y. Yamaguchi R. Tetrahedron 2008; 64: 1943
    • 7d Fujita K. Komatsubara A. Yamaguchi R. Tetrahedron 2009; 65: 3624
    • 7e Zhu M. Fujita K. Yamaguchi R. Org. Lett. 2010; 12: 1336
    • 7f Kawahara R. Fujita K. Yamaguchi R. J. Am. Chem. Soc. 2010; 132: 15108
  • 8 Fujita K. Furukawa S. Morishima N. Shimizu M. Yamaguchi R. ChemCatChem 2018; 10: 1993

    • There are many precedent reports for the N-alkylation of amines with alcohols (not using MeOH) catalyzed by NHC complexes of transition metals. For example:
    • 9a Xie X. Huynh HV. ACS Catal. 2015; 5: 4143
    • 9b Gnanamgari D. Sauer EL. O. Schley ND. Butler C. Incarvito CD. Crabtree RH. Organometallics 2009; 28: 321
    • 9c Liu S. Rebros M. Stephens G. Marr AC. Chem. Commun. 2009; 2308
  • 10 X-ray crystal structure analysis of 1c was performed. Details are described in the Supporting Information.

    • UV-promoted heterogeneous catalytic system for the N,N-dimethylation of primary amines has been also reported:
    • 11a Tsarev VN. Morioka Y. Caner J. Wang Q. Ushimaru R. Kudo A. Naka H. Saito S. Org. Lett. 2015; 17: 2530
    • 11b Zhang L. Zhang Y. Deng Y. Shi F. Catal. Sci. Technol. 2015; 5: 3226
    • 11c Zhang L. Zhang Y. Deng Y. Shi F. RSC Adv. 2015; 5: 14514
  • 12 Ball RG. Graham WA. G. Heinekey DM. Hoyano JK. McMaster AD. Mattson BM. Michel ST. Inorg. Chem. 1990; 29: 2023
    • 13a Gill DS. Maitlis PM. J. Organomet. Chem. 1975; 87: 359
    • 13b Kang JW. Moseley K. Maitlis PM. J. Am. Chem. Soc. 1969; 91: 5970
  • 14 Tanabe Y. Hanasaka F. Fujita K. Yamaguchi R. Organometallics 2007; 26: 4618
  • 15 Bhattacharyya S. J. Org. Chem. 1995; 60: 4928
  • 16 Krajnik P. Michos D. Crabtree RH. New J. Chem. 1993; 17: 805
  • 17 Bhattacharyya S. Molecules 2000; 5: M159
  • 18 Hamid MH. S. A. Allen CL. Lamb GW. Maxwell AC. Maytum HC. Watson AJ. A. Williams JM. J. J. Am. Chem. Soc. 2009; 131: 1766
  • 19 Bergstad K. Bäckvall J. J. Org. Chem. 1998; 63: 6650
  • 20 Yang L. Lin J. Kang L. Zhou W. Ma D.-Y. Adv. Synth. Catal. 2018; 360: 485
  • 21 Price GA. Flower KR. Pritchard RG. Brisdon AK. Quayle P. Dalton Trans. 2011; 40: 11696
  • 22 Jazwinski J. J. Mol. Struct. 2005; 750: 7
  • 23 Ollis WD. Rey M. Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1983; 1009
  • 24 Alberico E. Braun W. Calmuschi-Cula B. Englert U. Salzer A. Totev D. Eur. J. Inorg. Chem. 2007; 4923
  • 25 Sun N. Wang S. Mo W. Hu B. Shen Z. Hu X. Tetrahedron 2010; 66: 7142
  • 26 Ikawa T. Barder TE. Biscoe MR. Buchwald SL. J. Am. Chem. Soc. 2007; 129: 13001
  • 27 Li F. Xie J. Shan H. Sun C. Chen L. RSC Adv. 2012; 2: 8645
  • 28 Fors BP. Watson DA. Biscoe MR. Buchwald SL. J. Am. Chem. Soc. 2008; 130: 13552
  • 29 Yang Z. Zhang H. Yu B. Zhao Y. Ma Z. Ji G. Han B. Liu Z. Chem. Commun. 2015; 51: 11576
  • 30 Stephanopoulos N. Carrico ZM. Francis MB. Angew. Chem. Int. Ed. 2009; 48: 9498
  • 31 Lu Y. Li X. Zheng X. Wang M. Xu Q. Zhu J. Li J. J. Med. Chem. 2017; 60: 5099
  • 32 Sato S. Nakamura H. Angew. Chem. Int. Ed. 2013; 52: 8681
  • 33 Lewis RS. Wisthoff MF. Grissmerson J. Chain WJ. Org. Lett. 2014; 16: 3832