Synthesis 2018; 50(03): 499-513
DOI: 10.1055/s-0036-1591853
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Nickel Catalysis Enabled by Stoichiometric Metallic Reducing Agents

Edward Richmond*
University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France   Email: richmond@unistra.fr   Email: moran@unistra.fr
,
University of Strasbourg, CNRS, ISIS UMR 7006, 67000 Strasbourg, France   Email: richmond@unistra.fr   Email: moran@unistra.fr
› Author Affiliations
This work was supported in part by a LabEx CSC ‘Chemistry of Complex Systems’ grant and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 639170).
Further Information

Publication History

Received: 29 September 2017

Accepted after revision: 07 November 2017

Publication Date:
14 December 2017 (online)


Abstract

This short review describes recent advances in the field of nickel catalysis, specifically transformations employing stable Ni(II) precatalysts that are activated in situ with the use of stoichiometric metallic reducing agents. The article seeks to summarise the field, highlighting key studies and discussing mechanistic facets. The review closes with an eye on future directions in redox-enabled nickel catalysis.

1 Introduction

2 Nickel Catalysis Enabled by Metallic Reducing Agents

3 Reductive Cross-Coupling

4 Reductive Carboxylation and Acylation-type reactions

5 Miscellaneous Reactivity

6 Perspectives and Future Directions

 
  • References

  • 1 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/
  • 2 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1912/

    • For reviews, see:
    • 3a Tollefson EJ. Hanna LE. Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
    • 3b Choi J. Fu GC. Science 2017; 356: 152
    • 3c Fu GC. ACS Cent. Sci. 2017; 3: 692

    • For leading references, see:
    • 3d Saito B. Fu GC. J. Am. Chem. Soc. 2008; 130: 6694
    • 3e Son S. Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
    • 3f Saito B. Fu GC. J. Am. Chem. Soc. 2007; 129: 9602
    • 3g Binder JT. Cordier CJ. Fu GC. J. Am. Chem. Soc. 2012; 134: 17003
    • 3h Harris MR. Hanna LE. Greene MA. Moore CE. Jarvo ER. J. Am. Chem. Soc. 2013; 135: 3303
    • 3i Liang Y. Fu GC. J. Am. Chem. Soc. 2015; 137: 9523
    • 3j Schmidt J. Choi J. Liu AT. Slusarczyk M. Fu GC. Science 2016; 354: 1265
  • 4 Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
    • 5a Knappke CE. I. Grupe S. Gaertner D. Corpet M. Gosmini C. Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
    • 5b Gu J. Wang X. Xue W. Gong H. Org. Chem. Front. 2015; 2: 1411
    • 5c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
  • 6 Moragas T. Correa A. Martin R. Chem. Eur. J. 2014; 20: 8242
    • 7a Tellis JC. Primer DN. Molander GA. Science 2014; 345: 437
    • 7b Zuo Z. Ahneman D. Chu L. Terrett J. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
    • 7c Twilton J. Le C. Zhang P. Shaw MH. Evans RW. MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 52
    • 8a Gui Y.-Y. Sun L. Lu ZP. Yu DG. Org. Chem. Front. 2016; 3: 522
    • 8b Cavalcatni LN. Molander GA. Top Curr. Chem. 2016; 374: 39
    • 9a Yamaguchi J. Muto K. Itami K. Top. Curr. Chem. 2016; 374
    • 9b Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 9c Davies HM. L. Morton D. J. Org. Chem. 2016; 81: 343
  • 10 Wurtz A. Annal. Chim. Phys. 1855; 44: 275
  • 11 Okude Y. Hirano S. Hiyama T. Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
  • 12 Jin H. Uenishi J. Christ WJ. Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
  • 13 Fuerstner A. Shi N. J. Am. Chem. Soc. 1996; 118: 2533
    • 14a Isse AA. Lin CY. Coote ML. Gennaro A. J. Phys. Chem. B 2011; 115: 678
    • 14b Fry AJ. Krieger RL. J. Org. Chem. 1976; 41: 54
    • 15a Quasdorf KW. Tian X. Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
    • 15b Quasdorf KW. Riener M. Petrova KV. Garg NK. J. Am. Chem. Soc. 2009; 131: 17749
    • 15c Hie L. Ramgren SD. Mesganaw T. Garg NK. Org. Lett. 2012; 14: 4182
  • 16 Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
  • 17 Everson DA. Shrestha R. Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
  • 18 Everson DA. Jones BA. Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
  • 19 Lu X. Yi J. Zhang Z.-Q. Dai J.-J. Liu JH. Xiao B. Fu Y. Liu L. Chem. Eur. J. 2014; 20: 15339
  • 20 Li X. Feng Z. Jiang ZX. Zhang X. Org. Lett. 2015; 17: 5570
  • 21 Zhang J. Lu G. Xu J. Sun H. Shen Q. Org. Lett. 2016; 18: 2860
    • 22a Johnson KA. Biswas S. Weix DJ. Chem. Eur. J. 2016; 22: 7399
    • 22b Qiu C. Yao K. Zhang X. Gong H. Org. Biomol. Chem. 2016; 14: 11332
  • 23 Konev MO. Hanna LE. Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
  • 24 Molander GA. Traister KM. O’Neill BT. J. Org. Chem. 2014; 79: 5771
  • 25 Molander GA. Traister KM. O’Neill BT. J. Org. Chem. 2015; 80: 2907
  • 26 Molander GA. Wisniewski SR. Traister KM. Org. Lett. 2014; 16: 3692
  • 27 Wang X. Wang S. Xue W. Gong H. J. Am. Chem. Soc. 2015; 137: 11562
    • 28a Anka-Lufford LL. Prinsell MR. Weix DJ. J. Org. Chem. 2012; 77: 9989
    • 28b Cui X. Wang S. Zhang Y. Deng W. Qian Q. Gong H. Org. Biomol. Chem. 2013; 11: 3094
    • 29a Shrestha R. Weix DJ. Org. Lett. 2011; 13: 2766
    • 29b Shrestha R. Dorn SC. M. Weix DJ. J. Am. Chem. Soc. 2013; 135: 751
    • 29c Huihui KM. M. Shrestha R. Weix DJ. Org. Lett. 2017; 19: 340
  • 30 Yu X. Yang T. Wang S. Xu H. Gong H. Org. Lett. 2011; 14: 2138
  • 31 Xu H. Zhao C. Qian Q. Deng W. Gong H. Chem. Sci. 2013; 4: 4022
  • 32 Liu Y. Xiao S. Liang Z. Qi Y. Du F. Chem. Asian J. 2017; 12: 673
  • 33 Prinsell MR. Everson DA. Weix DJ. Chem. Commun. 2010; 5743
  • 34 Xue W. Xu H. Liang Z. Qian Q. Gong H. Org. Lett. 2014; 16: 4984
  • 35 Cao Z.-C. Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
  • 37 Jai X. Zhang X. Qian Q. Gong H. Chem. Commun. 2015; 10302
  • 38 Zhao C. Jia X. Wang X. Gong H. J. Am. Chem. Soc. 2014; 136: 17645
  • 39 Zheng M. Xue W. Xue T. Gong H. Org. Lett. 2016; 18: 6152
  • 40 Ni S. Zhang W. Mei H. Han J. Pan Y. Org. Lett. 2017; 19: 2536
  • 41 Hsieh J.-C. Chen Y.-C. Cheng A.-Y. Tseng H.-C. Org. Lett. 2012; 14: 1282
  • 42 Takise R. Itami K. Yamaguchi J. Org. Lett. 2016; 18: 4428
  • 43 Biswas S. Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
  • 44 Griller D. Ingold KU. Acc. Chem. Res. 1980; 13: 317
  • 45 Zhao C. Jia X. Wang X. Gong H. J. Am. Chem. Soc. 2014; 136: 5874
  • 46 Liu J. Ren Q. Zhang X. Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544
  • 47 Zhao Y. Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
  • 48 Wotal AC. Ribson RD. Weix DJ. Organometallics 2014; 33: 5874
    • 49a Ocafrain M. Devaud M. Troupel M. Perichon J. J. Chem. Soc., Chem. Commun. 1995; 2331
    • 49b Dolhem E. Ocafrain M. Nedélec JY. Troupel M. Tetrahedron 1997; 53: 17089
    • 49c Ocafrain M. Dolhem E. Nedelec J. Troupel M. J. Organomet. Chem. 1998; 571: 37
    • 50a Huihui KM. M. Caputo JA. Melchor Z. Olivares AM. Spiewak AM. Johnson KA. DiBenedetto TA. Kim S. Ackerman LK. G. Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
    • 50b Suzuki N. Hofstra JL. Poremba KE. Reisman SE. Org. Lett. 2017; 19: 2150
  • 51 Qian Q. Zang Z. Wang S. Chen Y. Lin K. Gong H. Synlett 2013; 24: 619
  • 52 Cherney AH. Kadunce NT. Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
  • 53 Cherney AH. Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
  • 54 Poremba KE. Kadunce NT. Suzuki N. Cherney AH. Reisman SE. J. Am. Chem. Soc. 2017; 139: 5684
  • 55 Kadunce NT. Reisman SE. J. Am. Chem. Soc. 2015; 137: 10480
    • 56a Hansen EC. Pedro DJ. Wotal AC. Gower NJ. Nelson JD. Caron S. Weix DJ. Nature Chem. 2016; 8: 1126
    • 56b Hansen EC. Li C. Yang S. Pedro D. Weix DJ. J. Org. Chem. 2017; 82: 7085
  • 57 Correa A. Martin R. Angew. Chem. Int. Ed. 2009; 48: 6201 ; and references therein
  • 58 Osakada K. Sato R. Yamamoto T. Organometallics 1994; 13: 4645
    • 59a Amatore C. Jutand A. J. Am. Chem. Soc. 1991; 113: 2819
    • 59b Amatore C. Jutand A. Kjalil F. Nielsen MF. J. Am. Chem. Soc. 1992; 114: 7076
  • 60 Correa A. Martin R. J. Am. Chem. Soc. 2009; 131: 15974
  • 61 Fujihara T. Nogi K. Xu T. Terao J. Tsuji Y. J. Am. Chem. Soc. 2012; 134: 9106
  • 62 Nogi K. Fujihara T. Terao J. Tsuji Y. J. Org. Chem. 2015; 80: 11618
  • 63 Leon T. Correa A. Martin R. J. Am. Chem. Soc. 2013; 135: 1221
  • 64 Correa A. Leon T. Martin R. J. Am. Chem. Soc. 2014; 136: 1062
  • 65 Moragas T. Gaydou M. Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
  • 66 Wang X. Nakajima M. Martin R. J. Am. Chem. Soc. 2015; 137: 8924
  • 67 Fujihara T. Horimoto Y. Mizoe T. Sayyed FB. Tani Y. Terao J. Sakaki S. Tsuji Y. Org. Lett. 2014; 16: 4960
  • 68 Doi R. Abdullah I. Taniguchi T. Saito N. Sato Y. Chem. Commun. 2017; 53: 7720
  • 69 Wang X. Liu Y. Martin R. J. Am. Chem. Soc. 2015; 137: 6476
  • 70 Moragas T. Martin R. Synthesis 2016; 48: 2816
  • 71 Liu Y. Cornella J. Martin R. J. Am. Chem. Soc. 2014; 136: 11212
  • 72 Borjesson M. Moragas T. Martin R. J. Am. Chem. Soc. 2016; 138: 7504
  • 73 Moragas T. Cornella J. Martin R. J. Am. Chem. Soc. 2014; 136: 17702
    • 74a van Gemmeren M. Borjesson M. Tortajada A. Sun S.-Z. Okura K. Martin R. Angew. Chem. Int. Ed. 2017; 56: 6558
    • 74b Chen Y.-G. Shuai B. Ma C. Zhang X.-J. Fang P. Mei T.-S. Org. Lett. 2017; 19: 2969
  • 75 During the preparation of this review, an article describing the site-selective carboxylation of alkenes/alkynes has also appeared in press, see: Gaydou M. Moragas T. Julia-Hernandez F. Martin R. J. Am. Chem. Soc. 2017; 139: 12161
  • 76 Julia-Hernandez F. Moragas T. Cornella J. Martin R. Nature 2017; 545: 84
  • 77 Correa A. Martin R. J. Am. Chem. Soc. 2014; 136: 7253
  • 78 Wang X. Nakajima M. Serrano E. Martin R. J. Am. Chem. Soc. 2016; 138: 15531
  • 79 Serrano E. Martin R. Angew. Chem. Int. Ed. 2016; 55: 11207
  • 80 Panahi F. Jamedi F. Iranpoor N. Eur. J. Org. Chem. 2016; 780
  • 81 Komeyama K. Asakura R. Takaki K. Org. Biomol. Chem. 2015; 13: 8713
    • 82a Kanai H. Hiraki N. Chem. Lett. 1979; 761
    • 82b Kanai H. Hiraki N. Iida S. Bull. Chem. Soc. Jpn. 1983; 56: 1025
  • 83 Zhou Y.-Y. Uyeda C. Angew. Chem. Int. Ed. 2016; 128: 3223
    • 84a For a recent review, see: Tahkur A. Louie J. Acc. Chem. Res. 2015; 48: 2354

    • For leading examples, see:
    • 84b Seo J. Chiu HM. P. Heeg MJ. Montgomery J. J. Am. Chem. Soc. 1999; 121: 476
    • 84c Herath A. Montgomery J. J. Am. Chem. Soc. 2006; 128: 14030
    • 84d Ni Y. Montgomery J. J. Am. Chem. Soc. 2006; 128: 2609
    • 84e Chowdhury SK. Amarasinghe KK. D. Heeg MJ. Montgomery J. J. Am. Chem. Soc. 2000; 122: 6775
    • 84f Ehle AR. Zhou Q. Watson MP. Org. Lett. 2012; 14: 1202
  • 85 Omer HM. Liu P. J. Am. Chem. Soc. 2017; 139: 9909
  • 86 Amaike K. Muto K. Yamaguchi J. Itami K. J. Am. Chem. Soc. 2012; 134: 13573
  • 87 Nose A. Kudo T. Chem. Pharm. Bull. 1990; 38: 2097

    • The use of silanes as terminal reductants in nickel catalysis has been investigated. For a recent example, see:
    • 88a Simmons BJ. Hoffmann M. Hwang J. Jackl MK. Garg NK. Org. Lett. 2017; 19: 1910

    • For recent seminal examples of silanes as terminal reducing agents in cross-coupling manifolds, see:
    • 88b Green SA. Matos JL. M. Yagi A. Shenvi RA. J. Am. Chem. Soc. 2016; 138: 12779
    • 88c Lu X. Xiao B. Zhang Z. Gong T. Su W. Yi J. Fu Y. Liu L. Nat. Commun. 2016; 7: 11129
  • 89 Alonso F. Riente P. Yus M. Acc. Chem. Res. 2011; 44: 379
  • 90 Richmond E. Moran J. J. Org. Chem. 2015; 80: 6922
  • 91 Fu S. Chen N.-Y. Liu X. Shao Z. Luo S.-P. Liu Q. J. Am. Chem. Soc. 2016; 138: 8588
  • 92 Richmond E. Khan IU. Moran J. Chem. Eur. J. 2016; 22: 12274
    • 93a Shields JD. Gray EE. Doyle AG. Org. Lett. 2015; 17: 2166
    • 93b Magano J. Monfette S. ACS Catal. 2015; 5: 3120
    • 94a Standley EA. Jamison TF. J. Am. Chem. Soc. 2013; 135: 1585
    • 94b Standley EA. Smith SJ. Mueller P. Jamison TF. Organometallics 2014; 33: 2012
    • 95a Hartwig JF. Ge S. Angew. Chem. Int. Ed. 2012; 51: 12837
    • 95b Park NH. Teverovskiy G. Buchwald SL. Org. Lett. 2014; 16: 220
  • 96 Anka-Lufford LL. Huihui KM. M. Gower NJ. Ackermann LK. G. Weix DJ. Chem. Eur. J. 2016; 22: 11564
  • 97 Garcia-Dominguez A. Li Z. Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
    • 98a Zuo Z. Cong H. Li W. Choi J. Fu GC. MacMillan DW. C. J. Am. Chem. Soc. 2015; 138: 1832
    • 98b Noble A. McCarver SJ. MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
    • 98c Johnston CP. Smith RT. Allmendinger S. MacMillan DW. C. Nature 2016; 536: 322
    • 98d Chu L. Lipshultz JM. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
    • 99a El Khatib M. Serafim RA. M. Molander GA. Angew. Chem. Int. Ed. 2016; 55: 254
    • 99b Primer DN. Karakaya I. Tellis JC. Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
    • 99c Guttierrez O. Tellis JC. Primer DN. Molander GA. Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
    • 100a Durandetti S. Sibille S. Périchon J. J. Org. Chem. 1989; 54: 2198
    • 100b Durandetti M. Nédélec J.-Y. Périchon J. J. Org. Chem. 1996; 61: 1748
    • 100c Durandetti M. Périchon J. Nédélec J.-Y. Tetrahedron Lett. 1997; 38: 8683
    • 100d Durandetti M. Périchon J. Nédélec J.-Y. Tetrahedron Lett. 1999; 40: 9009
    • 100e Durandetti M. Gosmini C. Périchon J. Tetrahedron 2007; 63: 1146
  • 101 Li C. Kawamata Y. Nakamura H. Vantourout JC. Liu Z. Hou Q. Bao D. Starr JT. Chen J. Yan M. Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
  • 102 IKA has recently (August 2017) announced the commercial release of ElectraSyn 2.0, a stirrer-hotplate sized electrochemical setup