Z Orthop Unfall 2015; 153(04): 433-440
DOI: 10.1055/s-0035-1546139
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Das biologische Skalpell I – Frakturheilung und patientenbezogene Einflussfaktoren

The Biological Knife I – Fracture Healing and Patient-Dependent Influencing Factors
P. Garcia
Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster
,
M. Langer
Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster
,
M. Raschke
Klinik für Unfall-, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Münster
› Author Affiliations
Further Information

Publication History

Publication Date:
29 June 2015 (online)

Zusammenfassung

Trotz unseres zunehmenden Wissens über die Mechanismen der Frakturheilung kommt es im klinischen Alltag bei 5–10 % der Patienten zu einer verzögerten oder ausbleibenden Frakturheilung. Die biomechanischen Voraussetzungen zur adäquaten Frakturheilung sind gut untersucht und finden Anwendung in aktuellen Implantatsystemen und Osteosynthesetechniken. Oftmals wird für die verzögerte Frakturheilung eine schlechte „Biologie“ verantwortlich gemacht. Die zugrunde liegenden „biologischen“ Ursachen sind multifaktoriell und die einzelnen Aspekte oft nur unzureichend in Studien höheren Evidenzgrads untersucht. Dennoch sollte es Aufgabe des behandelnden Arztes sein, neben einer adäquat durchgeführten Osteosynthese oder Retention bei konservativer Behandlung, alle Faktoren zu berücksichtigen, welche die Frakturheilung negativ beeinflussen. Die vorliegende Übersichtsarbeit soll in einem 1. Teil einen Überblick geben über patientenbezogene Faktoren, die die Frakturheilung beeinflussen. Hierzu zählen Komorbidität des Patienten und persönliche Gewohnheiten (Rauchen, Alkohol, Ernährung). In klinischen Studien sind für jeden einzelnen dieser Faktoren nur schwer signifikante Einflüsse auf die Frakturheilung nachweisbar, da hierzu sehr hohe Patientenzahlen und homogene Kollektive erforderlich wären. Dennoch ermöglicht uns die Kenntnis dieser Einflussfaktoren, die Bedingungen für eine optimale Frakturheilung zu optimieren. Ebenso wie der Chirurg während eines chirurgischen Eingriffs präzise Schnitte durchführt, ist auch eine präzise Analyse und Optimierung der „biologischen“ Gegebenheiten möglich und zu empfehlen.

Abstract

Despite our growing knowledge about the mechanisms of fracture healing, about 5 to 10 % of all fractures show impaired healing or non-union formation. We have learned about the biomechanical requirements for adequate fracture healing, leading to sophisticated osteosynthesis techniques and specific implant systems. A poor “biology” is often made responsible for the failure of bone healing. However, the underlying “biological” mechanisms are multifactorial and poorly understood. There is a lack of knowledge and clinical evidence about specific biological factors which influence fracture healing. However, it is the responsibility of the medical practitioner to address all factors that could negatively influence fracture healing, while respecting general principles of conservative or operative fracture management. The current review aims to summarise patient-related factors that influence fracture healing including co-morbidities of the patient just as well as life style-related factors such as smoking, nutrition and alcohol consumption. It is hardly possible to prove a significant influence for each of these factors in clinical studies, because homogeneous cohorts and very high patient numbers would be needed. Nevertheless, a deeper knowledge about these factors potentially influencing fracture healing could help us to improve fracture healing and decrease the number of non-unions in our patients. Just as well as the surgeons performs precise incisions with a knife, a precise analysis and improvement of the “biology” are possible and recommended.

 
  • Literatur

  • 1 Mavcic B, Antolic V. Optimal mechanical environment of the healing bone fracture/osteotomy. Int Orthop 2012; 36: 689-695
  • 2 Liang CT, Barnes J, Seedor JG et al. Impaired bone activity in aged rats: alterations at the cellular and molecular levels. Bone 1992; 13: 435-441
  • 3 Kwong FN, Harris MB. Recent developments in the biology of fracture repair. J Am Acad Orthop Surg 2008; 16: 619-625
  • 4 Gruber R, Koch H, Doll BA et al. Fracture healing in the elderly patient. Exp Gerontol 2006; 41: 1080-1093
  • 5 Mehta M, Strube P, Peters A et al. Influences of age and mechanical stability on volume, microstructure, and mineralization of the fracture callus during bone healing: is osteoclast activity the key to age-related impaired healing?. Bone 2010; 47: 219-228
  • 6 Parker MJ, Raghavan R, Gurusamy K. Incidence of fracture-healing complications after femoral neck fractures. Clin Orthop Relat Res 2007; 458: 175-179
  • 7 Gaston MS, Simpson AH. Inhibition of fracture healing. J Bone Joint Surg Br 2007; 89: 1553-1560
  • 8 Beil FT, Barvencik F, Gebauer M et al. Effects of estrogen on fracture healing in mice. J Trauma 2010; 69: 1259-1265
  • 9 Maus U, Andereya S, Schmidt H et al. [Therapy effects of testosterone on the recovery of bone defects]. Z Orthop Unfall 2008; 146: 59-63
  • 10 Koval KJ, Maurer SG, Su ET et al. The effects of nutritional status on outcome after hip fracture. J Orthop Trauma 1999; 13: 164-169
  • 11 Fox KM, Magaziner J, Hawkes WG et al. Loss of bone density and lean body mass after hip fracture. Osteoporos Int 2000; 11: 31-35
  • 12 Flodin L, Sääf M, Cederholm T et al. Additive effects of nutritional supplementation, together with bisphosphonates, on bone mineral density after hip fracture: a 12-month randomized controlled study. Clin Interv Aging 2014; 9: 1043-1050
  • 13 Avenell A, Handoll HH. Nutritional supplementation for hip fracture aftercare in older people. Cochrane Database Syst Rev 2010; (1) CD001880
  • 14 Bell JJ, Bauer JD, Capra S et al. Quick and easy is not without cost: implications of poorly performing nutrition screening tools in hip fracture. J Am Geriatr Soc 2014; 62: 237-243
  • 15 Volkert D, Berner YN, Berry E et al. ESPEN Guidelines on Enteral Nutrition: Geriatrics. Clin Nutr 2006; 25: 330-360
  • 16 Cederholm T, Hedstrom M. Nutritional treatment of bone fracture. Curr Opin Clin Nutr Metab Care 2005; 8: 377-381
  • 17 Al-Hadithy N, Sewell MD, Bhavikatti M et al. The effect of smoking on fracture healing and on various orthopaedic procedures. Acta Orthop Belg 2012; 78: 285-290
  • 18 Hernigou J, Schuind F. Smoking as a predictor of negative outcome in diaphyseal fracture healing. Int Orthop 2013; 37: 883-887
  • 19 Adams CI, Keating JF, Court-Brown CM. Cigarette smoking and open tibial fractures. Injury 2001; 32: 61-65
  • 20 Sorensen LT, Karlsmark T, Gottrup F. Abstinence from smoking reduces incisional wound infection: a randomized controlled trial. Ann Surg 2003; 238: 1-5
  • 21 Lindström D, Sadr Azodi O, Wladis A et al. Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial. Ann Surg 2008; 248: 739-745
  • 22 Skott M, Andreassen TT, Ulrich-Vinther M et al. Tobacco extract but not nicotine impairs the mechanical strength of fracture healing in rats. J Orthop Res 2006; 24: 1472-1479
  • 23 Chakkalakal DA, Novak JR, Fritz ED et al. Inhibition of bone repair in a rat model for chronic and excessive alcohol consumption. Alcohol 2005; 36: 201-214
  • 24 Rapuri PB, Gallagher JC, Balhorn KE et al. Alcohol intake and bone metabolism in elderly women. Am J Clin Nutr 2000; 72: 1206-1213
  • 25 Elmali N, Ertem K, Ozen S et al. Fracture healing and bone mass in rats fed on liquid diet containing ethanol. Alcohol Clin Exp Res 2002; 26: 509-513
  • 26 Kristensson H, Lunden A, Nilsson BE. Fracture incidence and diagnostic roentgen in alcoholics. Acta Orthop Scand 1980; 51: 205-207
  • 27 Levin ME, Boisseau VC, Avioli LV. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 1976; 294: 241-245
  • 28 Loder RT. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop Relat Res 1988; 232: 210-216
  • 29 van Wunnik BP, Weijers PH, van Helden SH et al. Osteoporosis is not a risk factor for the development of nonunion: a cohort nested case-control study. Injury 2011; 42: 1491-1494
  • 30 Nikolaou VS, Efstathopoulos N, Kontakis G et al. The influence of osteoporosis in femoral fracture healing time. Injury 2009; 40: 663-668
  • 31 Goldhahn J, Feron JM, Kanis J et al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int 2012; 90: 343-353
  • 32 Cortet B. Bone repair in osteoporotic bone: postmenopausal and cortisone-induced osteoporosis. Osteoporos Int 2011; 22: 2007-2010
  • 33 Giannoudis P, Tzioupis C, Almalki T et al. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury 2007; 38 (Suppl. 01) S90-S99
  • 34 Wähnert D, Lange JH, Schulze M et al. The potential of implant augmentation in the treatment of osteoporotic distal femur fractures: a biomechanical study. Injury 2013; 44: 808-812
  • 35 Dickson K, Katzman S, Delgado E et al. Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clin Orthop Relat Res 1994; 302: 189-193
  • 36 Zaghloul A, Haddad B, Barksfield R et al. Early complications of surgery in operative treatment of ankle fractures in those over 60: A review of 186 cases. Injury 2014; 45: 780-783
  • 37 Urabe K, Hotokebuchi T, Oles KJ et al. Inhibition of endochondral ossification during fracture repair in experimental hypothyroid rats. J Orthop Res 1999; 17: 920-925
  • 38 Naique SB, Pearse M, Nanchahal J. Management of severe open tibial fractures: the need for combined orthopaedic and plastic surgical treatment in specialist centres. J Bone Joint Surg Br 2006; 88: 351-357
  • 39 Garcia P, Histing T, Holstein JH et al. Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cell Mater 2013; 26: 1-12
  • 40 Whiteside LA, Lesker PA. The effects of extraperiosteal and subperiosteal dissection. II. On fracture healing. J Bone Joint Surg Am 1978; 60: 26-30
  • 41 Whiteside LA, Lesker PA. The effects of extraperiosteal and subperiosteal dissection. I. On blood flow in muscle. J Bone Joint Surg Am 1978; 60: 23-26
  • 42 Alexander AH, Cabaud HE, Johnston JO et al. Compression plate position. Extraperiosteal or subperiosteal?. Clin Orthop Relat Res 1983; 175: 280-285
  • 43 Bilkay U, Celik N, Bilkay U et al. The role of periosteum and different dissection types on callus formation: quantitative analyses with scintigraphy in a rabbit mandible model. Ann Plast Surg 2000; 45: 48-53
  • 44 Mannucci N, DʼOrto O, Biglioli F et al. Comparison of the effect of supraperiosteal versus subperiosteal dissection on the growing rabbit maxilla. Cleft Palate Craniofac J 2002; 39: 36-39
  • 45 Utvag SE, Grundnes O, Reikeras O. Effects of lesion between bone, periosteum and muscle on fracture healing in rats. Acta Orthop Scand 1998; 69: 177-180
  • 46 Utvag SE, Grundnes O, Reikeras O. Early muscle-periosteal lesion inhibits fracture healing in rats. Acta Orthop Scand 1999; 70: 62-66
  • 47 Grundnes O, Reikeras O. The importance of the hematoma for fracture healing in rats. Acta Orthop Scand 1993; 64: 340-342