Planta Med 2015; 81(12/13): 1146-1153
DOI: 10.1055/s-0035-1546113
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Studies on Unprocessed and Acid-Treated Arabinogalactan from Larch as an Inhibitor of Glycan Binding of a Plant Toxin and Biomedically Relevant Human Lectins[*]

Sabine André
1   Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, München, Germany
,
Birgit Classen
2   Institute of Pharmacy, Department of Pharmaceutical Biology, University of Kiel, Kiel, Germany
,
Hans-Joachim Gabius
1   Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, München, Germany
› Author Affiliations
Further Information

Publication History

received 26 February 2015
revised 13 April 2015

accepted 19 April 2015

Publication Date:
03 June 2015 (online)

Abstract

The increasing evidence for the physiological significance of glycan-protein (lectin) interactions prompts considerations for respective bioactivity of plant polysaccharides. Arabinogalactan from larch, a polysaccharide with a β1,3-linked galactose core and branches at the 6′-hydroxyl, was thus tested, together with two processed forms treated either with oxalic or trifluoroacetic acid. Hydrolysis by acid reduced the arabinose contents without backbone degradation. The three preparations were tested as an inhibitor of lectin binding in solid-phase and cell-based assays, using the toxin from Viscum album and a panel of seven human lectins (six galectins and a C-type lectin). Increasing potency correlating with the molecular contents of galactose was seen for the plant toxin. In general, relatively weak or no inhibitory capacity was detected for the three preparations, when binding of the human galectins and avian orthologues used as controls was measured. Acid-treated polysaccharides also weakly interfered with binding of the galactose-specific C-type lectin of human macrophages. Larch arabinogalactan, tested as a model, will thus most likely not impair (ga)lectin functionality physiologically.

* Dedicated to Prof. Dr. Dr. h. c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.


Supporting Information

 
  • References

  • 1 Gabius HJ ed. The sugar code. Fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009
  • 2 Pelletier I, Hashidate T, Urashima T, Nishi N, Nakamura T, Futai M, Arata Y, Kasai K, Hirashima M, Hirabayashi J, Sato S. Specific recognition of Leishmania major poly-β-galactosyl epitopes by galectin-9. Possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem 2003; 278: 22223-22230
  • 3 Buddecke E. Proteoglycans. In: Gabius HJ, editor The sugar code. Fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009: 199-216
  • 4 Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 2009; 113: 3333-3336
  • 5 Ryan CM, Mehlert A, Richardson JM, Ferguson MA, Johnson PJ. Chemical structure of Trichomonas vaginalis surface lipoglycan: a role for short galactose (β1–4/3) N-acetylglucosamine repeats in host cell interaction. J Biol Chem 2011; 286: 40494-40508
  • 6 Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 2012; 14: 1657-1675
  • 7 Ekholm FS, Ardá A, Eklund P, André S, Gabius HJ, Jiménez-Barbero J, Leino R. Studies related to Norway spruce galactoglucomannans: chemical synthesis, conformation analysis, NMR spectroscopic characterization, and molecular recognition of model compounds. Chem Eur J 2012; 18: 14392-14405
  • 8 Woodward AM, Senchyna M, Williams R, Argüeso P. Characterization of the interaction between hydroxypropyl guar galactomannan and galectin-3. Biochem Biophys Res Commun 2012; 424: 12-17
  • 9 Luck K, Ehwald R, Ziska P, Koppitz H. Affinity sorbent for galactose-specific lectins consisting of deproteinized plant cell wall ghosts. Plant Sci 1992; 82: 29-35
  • 10 Inohara H, Raz A. Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconj J 1994; 11: 527-532
  • 11 Koppitz H, Woehlecke H, Ehwald R. Cross-linking treatement for increasing lectin binding capacity of a vesicular affinity sorbent consisting of higher plant cell walls. Phytochemistry 1994; 35: 1205-1213
  • 12 Krzeminski M, Singh T, André S, Lensch M, Wu AM, Bonvin AMJJ, Gabius HJ. Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochim Biophys Acta 2011; 1810: 150-161
  • 13 Knirel YA, Gabius HJ, Blixt O, Rapoport EM, Khasbiullina NR, Shilova NV, Bovin NV. Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides. Glycoconj J 2014; 31: 7-12
  • 14 Siebert HC, Gilleron M, Kaltner H, von der Lieth CW, Kozár T, Bovin NV, Korchagina EY, Vliegenthart JFG, Gabius HJ. NMR-based, molecular dynamics- and random walk molecular mechanics-supported study of conformational aspects of a carbohydrate ligand (Galβ1–2Galβ1-R) for an animal galectin in the free and in the bound state. Biochem Biophys Res Commun 1996; 219: 205-212
  • 15 Gunning AP, Pin C, Morris VJ. Galectin-3-β-galactobiose interactions. Carbohydr Polym 2013; 92: 529-533
  • 16 Leclere L, Cutsem PV, Michiels C. Anti-cancer activities of pH- or heat-modified pectin. Front Pharmacol 2013; 4: 128
  • 17 Kaltner H, Gabius HJ. A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 2012; 27: 397-416
  • 18 Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M, Gabius HJ. Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie 2014; 104: 90-99
  • 19 Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius HJ. Tumor suppressor p 16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 2010; 277: 3552-3563
  • 20 Dawson H, André S, Karamitopoulou E, Zlobec I, Gabius HJ. The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity. Anticancer Res 2013; 33: 3053-3059
  • 21 Gabius HJ. Probing the cons and pros of lectin-induced immunomodulation: case studies for the mistletoe lectin and galectin-1. Biochimie 2001; 83: 659-666
  • 22 Clarke AE, Anderson RL, Stone BA. Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 1979; 18: 521-540
  • 23 Ponder GR, Richards GN. Arabinogalactan from Western larch, Part III: alkaline degradation revisited, with novel conclusions on molecular structure. Carbohydr Polym 1997; 34: 251-261
  • 24 Ponder GR. Arabinogalactan from Western larch. Part IV. Polymeric products of partial acid hydrolysis. Carbohydr Polym 1998; 36: 1-14
  • 25 Prescott JH, Groman EV, Gulyas G. New molecular weight forms of arabinogalactan from Larix occidentalis . Carbohydr Res 1997; 301: 89-93
  • 26 Chandrasekaran R, Janaswamy S. Morphology of Western larch arabinogalactan. Carbohydr Res 2002; 337: 2211-2222
  • 27 Göllner EM, Utermöhlen J, Kramer R, Classen B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr Polym 2011; 86: 1739-1744
  • 28 Moschini R, Gini F, Cappiello M, Balestri F, Falcone G, Boldrini E, Mura U, Del-Corso A. Interaction of arabinogalactan with mucins. Int J Biol Macromol 2014; 67: 446-451
  • 29 Groman EV, Enriquez PM, Jung C, Josephson L. Arabinogalactan for hepatic drug delivery. Bioconj Chem 1994; 5: 547-556
  • 30 Kaneo Y, Ueno T, Tanaka T, Iwase H, Yamaguchi Y, Uemura T. Pharmacokinetics and biodisposition of fluorescein-labeled arabinogalactan in rats. Int J Pharmaceut 2000; 201: 59-69
  • 31 Gabius HJ. Detection and functions of mammalian lectins: with emphasis on membrane lectins. Biochim Biophys Acta 1991; 1071: 1-18
  • 32 Stockart RJ. The asialoglycoprotein receptor: relationships between structure, function and expression. Physiol Rev 1995; 75: 591-609
  • 33 Denda-Nagai K, Kubota N, Tsuiji M, Kamata M, Irimura T. Macrophage C-type lectin on bone marrow-derived immature dendritic cells is involved in the internalization of glycosylated antigens. Glycobiology 2002; 12: 443-450
  • 34 Napoletano C, Zizzari IG, Rughetti A, Rahimi H, Irimura T, Clausen H, Wandall HH, Belleudi F, Bellati F, Pierelli L, Frati L, Nuti M. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation. Eur J Immunol 2012; 42: 936-945
  • 35 Ng WC, Liong S, Tate MD, Irimura T, Denda-Nagai K, Brooks AG, Londrigan SL, Reading PC. The macrophage galactose-type lectin can function as an attachment and entry receptor for influenza virus. J Virol 2014; 88: 1659-1672
  • 36 Gao X, Zhi Y, Sun L, Peng X, Zhang T, Xue H, Tai G, Zhou Y. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship. J Biol Chem 2013; 288: 33953-33965
  • 37 Gupta D, Kaltner H, Dong X, Gabius HJ, Brewer CF. Comparative cross-linking activities of lactose-specific plant and animal lectins and a natural lactose-binding immunoglobulin G fraction from human serum with asialofetuin. Glycobiology 1996; 6: 843-849
  • 38 Dam TK, Gabius HJ, André S, Kaltner H, Lensch M, Brewer CF. Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 2005; 44: 12564-12571
  • 39 Hoffmeister K, Falet H. Platelet glycoproteins as lectins in hematology. In: Gabius HJ, editor The sugar code. Fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009: 485-493
  • 40 Ross GD. Role of the lectin domain of Mac-1/CR3 (CD11b/CD18) in regulating intercellular adhesion. Immunol Res 2002; 25: 219-237
  • 41 OʼBrien XM, Heflin KE, Lavigne LM, Yu K, Kim S, Salomon AR, Reichner JS. Lectin site ligation of CR3 induces conformational changes and signaling. J Biol Chem 2012; 287: 3337-3348
  • 42 Marakalala MJ, Kerrigan AM, Brown GD. Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome 2011; 22: 55-65
  • 43 Gunning AP, Bongaerts RJ, Morris VJ. Recognition of galactan components of pectin by galectin-3. FASEB J 2009; 23: 415-424
  • 44 Gao X, Zhi Y, Zhang T, Xue H, Wang X, Foday AD, Tai G, Zhou Y. Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3. Glycoconj J 2012; 29: 159-165
  • 45 André S, Liu B, Gabius HJ, Roy R. First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Org Biomol Chem 2003; 1: 3909-3916
  • 46 Murphy PV, André S, Gabius HJ. The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 2013; 18: 4026-4053
  • 47 Smetana jr. K, André S, Kaltner H, Kopitz J, Gabius HJ. Context-dependent multifunctionality of galectin-1: a challenge for defining the lectin as therapeutic target. Expert Opin Ther Targets 2013; 17: 379-392
  • 48 Gilleron M, Siebert HC, Kaltner H, von der Lieth CW, Kozár T, Halkes KM, Korchagina EY, Bovin NV, Gabius HJ, Vliegenthart JFG. Conformer selection and differential restriction of ligand mobility by a plant lectin: conformational behaviour of Galβ1–3GlcNAcβ1-R, Galβ1–3GalNAcβ1-R and Galβ1–2Galβ1-R′ in the free state and complexed with galactoside-specific mistletoe lectin as revealed by random-walk and conformational-clustering molecular mechanics. Eur J Biochem 1998; 252: 416-427
  • 49 Ahmad N, Gabius HJ, Kaltner H, André S, Kuwabara I, Liu FT, Oscarson S, Norberg T, Brewer CF. Thermodynamic binding studies of cell surface carbohydrate epitopes to galectins-1, -3, and -7: evidence for differential binding specificities. Can J Chem 2002; 80: 1096-1104
  • 50 Park EI, Baenziger JU. Closely related mammals have distinct asialoglycoprotein receptor carbohydrate specificities. J Biol Chem 2004; 279: 40954-40959
  • 51 Tsuiji M, Fujimori M, Ohashi Y, Higashi N, Onami TM, Hedrick SM, Irimura T. Molecular cloning and characterization of a novel mouse macrophage C-type lectin, mMGL2, which has a distinct carbohydrate specificity from mMGL1. J Biol Chem 2002; 277: 28892-92801
  • 52 Oo-Puthinan S, Maenuma K, Sakakura M, Denda-Nagai K, Tsuiji M, Shimada I, Nakamura-Tsuruta S, Hirabayashi J, Bovin NV, Irimura T. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice. Biochim Biophys Acta 2008; 1780: 89-100
  • 53 Katzenmaier EM, André S, Kopitz J, Gabius HJ. Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro . Anticancer Res 2014; 34: 5429-5438
  • 54 Bartoloni M, Domínguez BE, Dragoni E, Richichi B, Fragai M, André S, Gabius HJ, Ardá A, Luchinat C, Jiménez-Barbero J, Nativi C. Targeting matrix metalloproteinases: design of a bifunctional inhibitor for presentation by tumour-associated galectins. Chem Eur J 2013; 19: 1896-1902
  • 55 Toegel S, Bieder D, André S, Kayser K, Walzer SM, Hobusch G, Windhager R, Gabius HJ. Human osteoarthritic knee cartilage: fingerprinting of adhesion/growth-regulatory galectins in vitro and in situ indicates differential upregulation in severe degeneration. Histochem Cell Biol 2014; 142: 373-388
  • 56 Gleeson PA, Clarke AE. Structural studies on the major component of Gladiolus style mucilage, an arabinogalactan-protein. Biochem J 1979; 181: 607-621
  • 57 Odonmažig P, Ebringerová A, Machová E, Alföldi J. Structural and molecular properties of the arabinogalactan isolated from Mongolian larchwood (Larix dahurica L.). Carbohydr Res 1994; 252: 317-324
  • 58 Blakeney AB, Harris PJ, Henry RJ, Stone BA. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 1983; 113: 291-299
  • 59 Willför S, Sjöholm R, Laine C, Holmbom B. Structural features of water-soluble arabinogalactans from Norway spruce and Scots pine heartwood. Wood Sci Technol 2002; 36: 101-110
  • 60 Zhang P, Zhang Q, Whistler RL. L-Arabinose release from arabinoxylan and arabinogalactan under potential gastric acidities. Cereal Chem 2003; 80: 252-254
  • 61 André S, Wang GN, Gabius HJ, Murphy PV. Combining glycocluster synthesis with protein engineering: an approach to probe into the significance of linker length in a tandem-repeat-type lectin (galectin-4). Carbohydr Res 2014; 389: 25-38
  • 62 André S, Jarikote DV, Yan D, Vincenz L, Wang GN, Kaltner H, Murphy PV, Gabius HJ. Synthesis of bivalent lactosides and their activity as sensors for differences between lectins in inter- and intrafamily comparisons. Bioorg Med Chem Lett 2012; 22: 313-318
  • 63 Marcelo F, Garcia-Martin F, Matsushita T, Sardinha J, Coelho H, Oude-Vrielink A, Koller C, André S, Cabrita EJ, Gabius HJ, Nishimura SI, Jiménez-Barbero J, Cañada FJ. Delineating binding modes of Gal/GalNAc and structural elements of the molecular recognition of tumor-associated mucin glycopeptides by the human macrophage galactose-type lectin. Chem Eur J 2014; 20: 16147-16155
  • 64 Gabius HJ, Walzel H, Joshi SS, Kruip J, Kojima S, Gerke V, Kratzin H, Gabius S. The immunomodulatory β-galactoside-specific lectin from mistletoe: partial sequence analysis, cell and tissue binding, and impact on intracellular biosignalling of monocytic leukemia cells. Anticancer Res 1992; 12: 669-675
  • 65 Solís D, Maté MJ, Lohr M, Ribeiro JP, López-Merino L, André S, Buzamet E, Cañada FJ, Kaltner H, Lensch M, Ruiz FM, Haroske G, Wollina U, Kloor M, Kopitz J, Sáiz JL, Menéndez M, Jiménez-Barbero J, Romero A, Gabius HJ. N-Domain of human adhesion/growth-regulatory galectin-9: preference for distinct conformers and non-sialylated N-glycans and detection of ligand-induced structural changes in crystal and solution. Int J Biochem 2010; 42: 1019-1029