Synthesis 2012; 44(19): 3077-3084
DOI: 10.1055/s-0032-1317164
paper
© Georg Thieme Verlag Stuttgart · New York

Studies Directed Towards the Synthesis of Bryostatin: A Stereoselective Synthesis of the C7–C16 Fragment

Jhillu S. Yadav*
Natural Product Chemistry, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: yadavpub@iict.res.in
,
Seema Aravind
Natural Product Chemistry, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: yadavpub@iict.res.in
,
Mahesh Kumar Gundluru
Natural Product Chemistry, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: yadavpub@iict.res.in
,
Basi V. Subba Reddy
Natural Product Chemistry, CSIR–Indian Institute of Chemical Technology, Hyderabad 500 007, India   Fax: +91(40)27160512   Email: yadavpub@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 22 June 2012

Accepted after revision: 02 August 2012

Publication Date:
29 August 2012 (online)


Abstract

A stereocontrolled asymmetric synthesis of the C7–C16 fragment of bryostatins is described. The key steps involved were a Jacobsen’s hydrolytic kinetic resolution and a Reformatsky reaction to build the C11–C16 fragment. A vinyl Grignard reagent was used to construct the C7–C10 fragment. The C11–C16 and C7–C10 fragments were coupled by means of a cross-metathesis reaction to give a key intermediate. The pyran ring system was constructed by means of an oxa-Michael reaction.

 
  • References

    • 1a Pettit GR, Herald CL, Clardy J, Arnold E, Doubek DL, Herald DL. J. Am. Chem. Soc. 1982; 104: 6848
    • 1b Pettit GR, Kamano Y, Herald CL, Tozawa M. J. Am. Chem. Soc. 1984; 106: 6768
    • 2a Kraft AS. J. Natl. Cancer Inst. 1993; 85: 1790

    • For reviews, see:
    • 2b Mohammad RM, Wall NR, Dutcher JA, Al Katib AM. Clin. Cancer. Res. 2000; 6: 4950
    • 2c Stone RM. Leuk. Res. 1997; 21: 399
    • 2d Kamano Y, Zhang HP, Hino A, Yoshida M, Pettit GR, Herald CL. Itokawa H. J. Nat. Prod. 1995; 58: 1868
    • 3a Kageyama M, Tamura T, Nantz MH, Roberts JC, Somfai P, Whritenour DC, Masamune S. J. Am. Chem. Soc. 1990; 112: 7407
    • 3b Blanchette MA, Malamas MS, Nantz MH, Roberts JC, Somfai P, Whritenour DC, Masamune S. J. Org. Chem. 1989; 54: 2817
    • 3c Ma P, Martin VC, Masamune S, Sharpless KB, Viti SM. J. Org. Chem. 1982; 47: 1378
    • 3d Masamune S, Sato T, Kim BM, Wollmann TA. J. Am. Chem. Soc. 1986; 108: 8279
    • 4a Ohmori K, Ogawa Y, Obitsu T, Ishikawa Y, Nishiyama S, Yamamura S. Angew. Chem. Int. Ed. 2000; 39: 2290
    • 4b Evans DA, Carter PH, Carreira EM, Charette AB, Prunet JA, Lautens M. J. Am. Chem. Soc. 1999; 121: 7540
    • 4c Evans DA, Carter PH, Carreira EM, Prunet JA, Charette AB, Lautens M. Angew. Chem. Int. Ed. 1998; 37: 2354
    • 4d Tanaka K, Ohta Y, Fuji K, Taga J. Tetrahedron Lett. 1993; 34: 4071
    • 4e Lu Y, Woo SK, Krische MJ. J. Am. Chem. Soc. 2011; 133: 13876
    • 4f Keck GE, Poudel YB, Cummins TJ, Rudra A, Covel JA. J. Am. Chem. Soc. 2011; 133: 744
    • 4g Wender PA, Schrier JA. J. Am. Chem. Soc. 2011; 133: 9228
    • 5a De Brabander J, Vandewalle M. Synthesis 1994; 855
    • 5b Vacalopoulos A, Lampe TF. J, Hoffmann HM. R. Org. Lett. 2001; 3: 929
    • 5c Weiss JM, Hoffmann HM. R. Tetrahedron: Asymmetry 1997; 8: 3913
    • 5d Ball M, Baron A, Bradshaw B, Omori H, MacCormick S, Thomas EJ. Tetrahedron Lett. 2004; 45: 8737
    • 5e O’Brien M, Taylor HN, Thomas EJ. Tetrahedron Lett. 2002; 43: 5491
    • 5f Yadav JS, Bandopadhyay A, Kunwar AC. Tetrahedron Lett. 2001; 42: 4907
    • 5g Keck GE, Welch DS, Poudel YB. Tetrahedron Lett. 2006; 47: 8267
    • 6a Evans DA, Chapman KT, Carreira EM. J. Am. Chem. Soc. 1988; 110: 3560
    • 6b Keck GE, Poudel YB, Welch DS, Kraft MB, Truong AP, Stephens JC, Kedei N, Lewin NE, Blumberg PM. Org. Lett. 2009; 11: 593
    • 6c Keck GE, Truong AP. Org. Lett. 2005; 7: 2153
    • 6d Keck GE, Kraft MB, Truong AP, Li W, Sanchez CC, Kedei N, Lewin NE, Blumberg PM. J. Am. Chem. Soc. 2008; 130: 6660
    • 6e Keck GE, Li W, Kraft MB, Kedei N, Lewin NE, Blumberg PM. Org. Lett. 2009; 11: 2277
    • 6f Wender PA, DeChristopher BA, Schrier AJ. J. Am. Chem. Soc. 2008; 130: 6658
    • 7a Hale KJ, Hummersone MG, Bhatia GS. Org. Lett. 2000; 2: 2189
    • 7b Hale KJ, Frigerio M, Manaviazar S. Org. Lett. 2003; 5: 503
    • 7c Trost BM, Yang H, Thiel OR, Frontier AJ, Brindle CS. J. Am. Chem. Soc. 2007; 129: 2206

      For reviews, see:
    • 8a Connon SJ, Blechert S. Top. Organomet. Chem. 2004; 11: 93
    • 8b Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42, 1900
    • 8c Ellis GW. L, Johnson CD, Rogers DN. J. Am. Chem. Soc. 1983; 105: 5090
    • 8d Ellis GW. L, Johnson CD, Rogers DN. J. Chem. Soc., Chem. Commun. (Cambridge) 1982; 36
    • 8e Evans DA, Carreira EM. Tetrahedron Lett. 1990; 31: 4703
    • 8f Edmunds AJ. F, Trueb W. Tetrahedron Lett. 1997; 38: 1009
    • 9a Byeon SR, Park H, Kim H, Hong J. Org. Lett. 2011; 13: 5816
    • 9b Hajare AK, Ravikumar V, Khaleel S, Bhuniya D, Srinivas Reddy D. J. Org. Chem. 2011; 76: 963
    • 9c Srihari P, Satyanarayana K, Ganganna B, Yadav JS. J. Org. Chem. 2011; 76: 1922
  • 10 Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
    • 11a For a review on the Reformatsky reaction, see: Fürstner A. Synthesis 1989; 571
    • 11b Zn was activated by sonication in 2–3% aq CuSO4 or by treatment with 5% aq HCl: for general methods for Zn activation see: Ross NA, Bartsch RA. J. Org. Chem. 2003; 68: 360
  • 12 Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE. Kurrow M. E, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307
  • 13 Schwartz NN, Blumbergs JH. J. Org. Chem. 1964; 29: 1976
  • 14 De Nooy AE. J, Besemer AC, van Bekkum H. Synthesis 1996; 1153 ; and references cited therein
    • 15a Garner P, Park JM. J. Org. Chem. 1988; 53: 2979
    • 15b Coleman RS, Carpenter AJ. Tetrahedron Lett. 1992; 33: 1697
    • 15c Trost BM, Yang H, Wuitschik G. Org. Lett. 2005; 7: 4761