Synlett 2011(16): 2387-2391  
DOI: 10.1055/s-0030-1261228
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Access to Saturated Fused Pyrimidine Derivatives via a Flexible N-Vinyl Tertiary Enamide Synthesis

Anthony A. Estrada*, Joseph P. Lyssikatos, Frédéric St-Jean, Philippe Bergeron
Genentech, Small Molecule Drug Discovery 1 DNA Way, South San Francisco, CA 94080, USA
Fax: +1(650)7424943; e-Mail: estrada.anthony@gene.com;
Further Information

Publication History

Received 8 June 2011
Publication Date:
08 September 2011 (online)

Abstract

An array of tetrasubstituted saturated fused pyrimidines has been synthesized through two-sequential, simple, and efficient one-pot operations. The strategic utilization of the N-PMB group proved critical in the ability to construct a broad range of N-vinyl tertiary enamide starting materials. This stands as a flexible approach to functionalized pyrimidines with the capability of manipulating either ketone, acid chloride, or nitrile reaction partners.

    References and Notes

  • For reviews, see:
  • 1a Undheim K. Benneche T. In Comprehensive Heterocyclic Chemistry II   Vol. 6:  Katritzky AR. Rees CW. Scriven EFV. McKillop A. Pergamon; Oxford (UK): 1996.  p.93-231  
  • 1b Lagoja IM. Chem. Biodiversity  2005,  2:  1 
  • 1c Michael JP. Nat. Prod. Rep.  2005,  22:  627 
  • 1d Joule JA. Mills K. In Heterocyclic Chemistry   4th ed.:  Blackwell Science; Cambridge (MA): 2000.  p.194-232  
  • 1e Erian AW. Chem. Rev.  1993,  93:  1991 
  • 1f Hill MD. Movassaghi M. Chem. Eur. J.  2008,  14:  6836 
  • 2a Movassaghi M. Hill MD. J. Am. Chem. Soc.  2006,  128:  14254 
  • 2b Ahmad OK. Hill MD. Movassaghi M. J. Org. Chem.  2009,  74:  8460 
  • For the synthesis of pyridines and quinolines from N-vinyl and N-aryl amides, see:
  • 2c Movassaghi M. Hill MD. J. Am. Chem. Soc.  2006,  128:  4592 
  • 2d Movassaghi M. Hill MD. Ahmad OK. J. Am. Chem. Soc.  2007,  129:  10096 
  • 3 For a general procedure, see: DeRuiter J. Swearingen BE. Wandrekar V. Mayfield CA. J. Med. Chem.  1989,  32:  1033 
  • 4a Shen R. Lin CT. Bowman EJ. Bowman BJ. Porco JA. J. Am. Chem. Soc.  2003,  125:  7889 
  • 4b Jiang L. Job GE. Klapars A. Buchwald SL. Org. Lett.  2003,  5:  3667 
  • 4c Pan X. Cai Q. Ma D. Org. Lett.  2004,  6:  1809 
  • For the use of Ti(OEt)4 as a Lewis acid and water scavenger, see:
  • 5a Liu G. Cogan DA. Owens TD. Tang TP. Ellman JA. J. Org. Chem.  1999,  64:  1278 
  • 5b Cogan DA. Ellman JA. J. Am. Chem. Soc.  1999,  121:  268 
  • 5c Davis FA. Zhang Y. Andemichael Y. Fang T. Fanelli DL. Zhang H. J. Org. Chem.  1999,  64:  1403 
  • 6 Imase H. Noguchi K. Hirano M. Tanaka K. Org. Lett.  2008,  10:  3563 
  • 7 For the synthesis of tri- and tetrasubstituted pyrimidines from the nucleophilic addition of two equivalents of nitriles to activated ketones, see: Martínez AG. Fernández AH. Fraile AG. Subramanian LR. Hanack M. J. Org. Chem.  1992,  57:  1627 
  • 8 For the synthesis of bicyclic 4-aminopyrimidines from the reaction of dinitriles with mononitriles, see: Chercheja S. Simpson JK. Lam HW. Tetrahedron  2011,  67:  3839 
  • For detailed studies involving the activation of amides with trifluoromethanesulfonic anhydride and pyridine, see:
  • 10a Charette AB. Grenon M. Can. J. Chem.  2001,  79:  1694 
  • 10b Charette AB. Mathieu S. Martel J. Org. Lett.  2005,  7:  5401 
  • 12 Medley JW. Movassaghi M. J. Org. Chem.  2009,  74:  1341 
  • 14 For a current review on the recent chemistry of enamides, see: Carbery DR. Org. Biomol. Chem.  2008,  6:  3455 
  • For the recent use of enamides in organic synthesis, see:
  • 15a Feltenberger JB. Hayashi R. Tang Y. Babiash ESC. Hsung RP. Org. Lett.  2009,  11:  3666 
  • 15b Allan KM. Stoltz BM. J. Am. Chem. Soc.  2008,  130:  17270 
  • 15c Allan KM. Stoltz BM. J. Am. Chem. Soc.  2008,  130:  1558 
  • 15d Ylioja PM. Mosley AD. Charlot CE. Carbery DR. Tetrahedron Lett.  2008,  49:  1111 
  • 15e Lu T. Song Z. Hsung RP. Org. Lett.  2008,  10:  541 
  • 15f Nguyen TB. Martel A. Dhal R. Dujardin G. J. Org. Chem.  2008,  73:  2621 
  • 15g Gohier F. Bouhadjera K. Faye D. Gaulon C. Maisonneuve V. Dujardin G. Dhal R. Org. Lett.  2007,  9:  211 
  • 15h Song Z. Lu T. Hsung RP. Al-Rashid ZF. Ko C. Tang Y. Angew. Chem. Int. Ed.  2007,  46:  4069 
  • 15i Martin R. Cuenca A. Buchwald SL. Org. Lett.  2007,  9:  5221 
  • 15j Ko C. Hsung RP. Al-Rashid ZF. Feltenberger JB. Lu T. Wei Y. Yang J. Zificsak CA. Org. Lett.  2007,  9:  4459 
  • 15k Barbazanges M. Meyer C. Cossy J. Org. Lett.  2007,  9:  3245 
  • 16a Bergeron P, Cohen F, Estrada A, Koehler MFT, Lau KHL, Ly C, Lyssikatos JP, Ortwine DF, Pei Z, and Zhao X. inventors; WO 2010/014939  A1. 
  • 16b Bergeron P, Cohen F, Estrada A, Koehler MFT, Lee W, Ly C, Lyssikatos JP, Pei Z, and Zhao X. inventors; WO 2010/151601  A1. 
9

Spectroscopic studies and experiments with carbocation scavengers (thioanisole, triethylsilane, etc.) were unsuccessful in identifying the PMB-containing side product.

11

Temperature-controlled experiments were performed with a Bruker 500 MHz, Avance III spectrometer with a 5 mm Bruker PABBO cryoprobe with data collection at -70 ˚C, -40 ˚C, -20 ˚C, 0 ˚C, and 30 ˚C.

13

Successful formation of saturated fused pyrimidine products can also be achieved in the absence of 2-chloropyridine, although longer reaction times are required (4-72 h) and lower yields (10-15% loss) are typically obtained.