Planta Med 2010; 76(2): 165-171
DOI: 10.1055/s-0029-1186038
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Turrealabdane, Turreanone and an Antisalmonellal Agent from Turraeanthus africanus

Pierre C. Djemgou1 , Donatien Gatsing2 , Mohamed-Elamir F. Hegazy3 , Abou H. El-Hamd Mohamed4 , François Ngandeu1 , Pierre Tane1 , Bonaventure T. Ngadjui5 , Serge Fotso6 , Hartmut Laatsch6
  • 1Department of Chemistry, University of Dschang, Dschang, Cameroon
  • 2Department of Biochemistry, University of Dschang, Dschang, Cameroon
  • 3Chemistry of Medicinal Plants Department, National Research Centre, Dokki, Giza, Egypt
  • 4Department of Chemistry, Aswan-Faculty of Science, South Valley University, Aswan, Egypt
  • 5Department of Organic Chemistry, University of Yaoundé I, Yaoundé, Cameroon
  • 6Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
Further Information

Publication History

received March 4, 2009 revised July 2, 2009

accepted July 9, 2009

Publication Date:
17 August 2009 (online)

Abstract

Phytochemical investigation of the seeds of Turraeanthus africanus (Meliaceae), a Cameroonian plant species traditionally used in the treatment of typhoid fever, afforded eight compounds, including two labdanes, a C-arabinoside derivative, a sesquiterpene, and several triterpenes, two of which are new: 15′,16′-dihydroxy-15(12′),15′(16′)-diolidebislabd-8(17),8′(17′),12-trien-16-al (1), trivially named turrealabdane and a C-arabinoside derivative (2), trivially named turreanone. The other compounds are 12,15-epoxylabda-8(17),12,14-trien-16-acetate (3), (+)-eudesmanol-O-L-arabinoside, cyclolaudenol, stigmasterol, sitosterol glucoside and lupeol. Acetylation and oxidation of turrealabdane yielded 15′,16′-diacetoxyturrealabdane and 15,12′-dioxoturrealabdane-15′,16′-dial, respectively. Their structures were determined by means of spectroscopic data including 1D and 2D NMR in combination with MS. The compounds were evaluated for antibacterial activities, chloramphenicol and amoxicillin being used as standard. Compound 3 was the only active principle, possessing the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of respectively 25 µg/mL and 100 µg/mL against Salmonella typhi, S. paratyphi A and S. paratyphi B. This compound did not show any activity against Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus.

References

  • 1 Tane P, Akam M T, Tsopmo A, Ndi C P, Sterner O. Two labdane diterpenoids and a seco-tetranortriterpenoid from Turreanthus africanus.  Phytochemistry. 2004;  65 3083-3087
  • 2 Mulholland D, Parel B, Coombes P H. The chemistry of the Meliaceae and Ptaeroxylaceae of Southern Africa and Madagascar.  Curr Org Chem. 2000;  4 1011-1054
  • 3 Zhou H, Hamazaki A, Fontana D J, Takahashi H, Esumi T, Wandscheer C B, Tsujimoto H, Fukuyama Y. New seco-limonoid from Melia azedarach and their cytotoxic activity.  J Nat Prod. 2004;  67 1544-1547
  • 4 Harbone J B, Mabry T J, Mabry H. The flavonoid, part 1. New York; Academic Press 1975: 587
  • 5 Tayman F S, Atsu B V Y, Opoku-Boahen Y, Seifert K, Grote D. Isolation of ent-labdane (+)-12,15-epoxylabda-8(17),12,14-trien-16-yl acetate from the seeds of Turraeanthus africanus and its cytostatic/cytotoxic effect on the growth of cancer cells in vitro.  Chem Nat Comp. 2006;  42 46-48
  • 6 Tatsimo N S J, Tane P, Srinivas P V, Sondengam B L, Melissa J, Okunji C O, Iwu M M, Khan I A. SchusterBM . Novela antimicrobial diterpenoids from Turraeanthus africanus.  Planta Med. 2005;  71 1145-1151
  • 7 Akam T M, Tane P, Wabo H K, Yong J N, Fanso-Free S N Y, Connolly J D, Evans C, Farrugia L J. A pregnane derivative and an anti-plasmodial labdane diterpenoid from the stem bark of Turraenthus africanus.  Nat Prod Commun. 2006;  6 449-452
  • 8 Azenkeng A, Akam T M, Hoffmann M R. Theoretical prediction of the stereochemistry of the OH groups in turraesterodione.  Theochemistry. 2007;  817 91-98
  • 9 Vardamides J C, Dongmo A B, Meyer M, Ndom J C, Azebaze A G B, Zounda M R S, Sielinou V T, Ndemangou B, Nkengfack A E, Ngando T M, Fomum Z T. Alkaloids from the stem bark of Turraeanthus africanus (Meliaceae).  Chem Pharm Bull. 2006;  54 1034-1036
  • 10 Kaiser J. Wood of the Month – Avodire: The light African wood with hidden strength.  Wood of the Month Annual, Supplement to Wood and Wood Product. 1990;  22A
  • 11 Kline M. Turreanthus africanus – Avodire. Flynn Jr JH A guide to useful wood of the world. Portland; King Philip Publishing Co 1979: 354
  • 12 Tane P. Biological activity of natural products. Yaoundé; Ayafor first Memorial Symposium 2001
  • 13 Cheesbrough M. Medical laboratory manual for tropical countries: Microbiology. Oxford; ELBS Edition 1991: 196
  • 14 Gatsing D, Aliyu R, Meli W B, Adoga G I, Tchouanguep M F. Phytochemical profile and antisalmonellal properties of Allium sativum Bulb extract.  West African J Biol Sci. 2003;  14 29
  • 15 Gatsing D, Mbah J A, Garba I H, Tane P, Djemgou P, Nji-Nkah B F. An antisalmonellal agent from the leaves of Glossocalyx brevipes Benth (Monimiaceae).  Pakistan J Biol Sci. 2006;  9 84-87
  • 16 WHO .Antimicrobial resistance. Geneva; WHO Scientific Working Group 1981
  • 17 Djemgou P C, Gatsing D, Kenmogne M, Ngamga D, Aliyu R, Adebayo A, Tane P, Ngadjui B T, Seguin E, Adoga G. An antisalmonellal agent and a new dihydroanthracenone from Cassia petersiana.  Res J Med Plant. 2007;  1 65-71
  • 18 Gatsing D, Moudji S T, Kuiate J R, Nji-Nkah B F, Fodouop S P C, Njateng G S S, Tchakoute V, Nkeugouapi C F N, Tchouagep F M. In vitro antibacterial activity of Alchornea cordifolia bark extract against Salmonella species causing typhoid fevers.  Ethiopian Pharm J. 2008;  26 83-94
  • 19 Hong-Xi X, Hui D, Keng-Yeow S. Labdane diterpene from Alpinia zerumbet.  Phytochemistry. 1996;  42 149-151
  • 20 Ortega A, Salazar I, Gavino R, Maldonado E. Labdane diterpenes from Brickellia kellermanii.  Phytochemistry. 1997;  44 319-324
  • 21 Zhou B-N, Baj N J, Glass T E, Malone S, Werkhoven M C M, Troon F V, David M, Wisse J H, Kingston D G I. Bioactive labdane diterpenoids from Renealmia alpinia collected in the Surinam rainforest.  J Nat Prod. 1997;  60 1287-1293
  • 22 Kong L Y, Qin M J, Niwa M. New cytotoxic bislabdanic diterpenoid from Alpinia calcarata.  Planta Med. 2002;  68 813
  • 23 Choi S Z, Kwon H C, Choi S U, Lee K R. Five new labdane diterpenes from Aster oharai.  J Nat Prod. 2002;  65 1102-1106
  • 24 Martins D, Hamerski L, Alvarenga S A V, Roque N F. Labdane dimers from Xylopia aromatica.  Phytochemistry. 1999;  51 813-817
  • 25 Harding W W, Henry G E, Lewis P A, Jacobs H, McLeans S, Reynolds W F. Alvaradoins A–D, anthracenone C-arabinoside from Alvaradoa jamaicensis.  J Nat Prod. 1999;  62 98-101
  • 26 Theodor R, Mues R, Zinsmeister H D, Markham K R. Flavone C-glycosides from Metzgeria furcata (Hepaticae).  J Biosci. 1983;  38C 165-169
  • 27 Cambi R C, Moratti S C, Rutledge P S, Weston R J, Woodgate P D. A synthesis of (−)-12,15-epoxylabda-8(17),12,14-trien-16-yl acetate and (−)-pumiloxide.  Aust J Chem. 1990;  43 1151-1161
  • 28 Yoshioka H, Mabry T J, Higo A. (+)-β-Eudesmol O-α-L-arabopyranoside, a new sesquiterpene glycoside from Machaeranthera tanacetifolia (H.B.K.) Nees (Compositae).  J Org Chem. 1969;  34 3697-3699
  • 29 Carbonnelle B, Denis F, Marmonier A, Pinon G, Vague R. Bacteriologie medicinale: techniques usuelles. Paris; Edition SIMEP 1987: 228

Mohamed-Elamir F. Hegazy

Chemistry of Medicinal Plant Department
National Research Centre

El-Bohoth St.

12622 Dokki Giza

Egypt

Phone: + 20 1 20 07 35 57

Fax: + 20 2 33 37 09 31

Email: elamir77@yahoo.com

    >