Synthesis
DOI: 10.1055/a-2295-5417
paper
Dual Catalysis

Asymmetric Hydrogenative Coupling of Indoles with Unsaturated Ketones Enabled by Copper/Ruthenium Relay Catalysis

Jian Zhang
a   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. of China
,
Chen Guo
a   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. of China
,
a   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. of China
,
Dong Xue
a   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. of China
,
Huaming Sun
a   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. of China
,
Jianliang Xiao
b   Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
,
Chao Wang
a   Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. of China
› Author Affiliations
This research was supported by the National Natural Science Foundation of China (22172096), the Fundamental Research Funds for the Central Universities (GK202307002, GK202002003), the Projects for the Academic Leaders and Academic Backbones, Shaanxi Normal University (16QNGG008), the Natural Science Basic Research Program of Shaanxi Province (2021JC-30), and the 111 project (B14041).


Abstract

A relay catalytic system is developed for the asymmetric hydrogenative coupling of indoles with α,β-unsaturated ketones, affording enantioenriched chiral γ-indole alcohols with broad substrate scope and excellent enantioselectivities (32 examples, up to >99% ee). Mechanistic studies suggest that the relay catalytic system consists of copper-catalyzed alkylation and ruthenium-catalyzed asymmetric hydrogenation.

Supporting Information



Publication History

Received: 01 March 2024

Accepted after revision: 26 March 2024

Accepted Manuscript online:
26 March 2024

Article published online:
03 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhang MZ, Chen Q, Yang GF. Eur. J. Med. Chem. 2015; 89: 421
    • 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Schmidt AW, Reddy KR, Knolker HJ. Chem. Rev. 2012; 112: 3193
    • 2a Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
    • 2b Chen JB, Jia YX. Org. Biomol. Chem. 2017; 15: 3550
    • 2c Hong L, Sun W, Liu C, Wang L, Wang R. Chem. Eur. J. 2010; 16: 440
    • 2d Li TZ, Liu SJ, Tan W, Shi F. Chem. Eur. J. 2020; 26: 15779
    • 2e Sheng FT, Wang JY, Tan W, Zhang YC, Shi F. Org. Chem. Front. 2020; 7: 3967
    • 2f Shi F, Wu H, He YP. Synthesis 2015; 47: 1990
    • 2g Song J, Chen DF, Gong LZ. Natl. Sci. Rev. 2017; 4: 381
    • 2h Xia ZL, Xu-Xu QF, Zheng C, You SL. Chem. Soc. Rev. 2020; 49: 286
    • 2i Ye ZS, Li JC, Wang G. Synthesis 2022; 54: 2133
    • 2j Zhang YC, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 2k Zheng C, You SL. Nat. Prod. Rep. 2019; 36: 1589
    • 3a Bera K, Schneider C. Org. Lett. 2016; 18: 5660
    • 3b Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
    • 4a Zeng M, You SL. Synlett 2010; 1289
    • 4b Liu RR, Liang RX, Jia YX. Synlett 2017; 29: 157
    • 4c Beletskaya I, Averin A. Curr. Organocatal. 2015; 3: 60
    • 4d Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 4e Ahmad T, Khan S, Ullah N. ACS Omega 2022; 7: 35446
    • 5a Bower JF, Kim IS, Patman RL, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 34
    • 5b Feng J, Holmes M, Krische MJ. Chem. Rev. 2017; 117: 12564
    • 5c Hassan A, Krische MJ. Org. Process Res. Dev. 2011; 15: 1236
    • 5d Jang H.-Y, Krische MJ. Acc. Chem. Res. 2004; 37: 653
    • 5e Ngai MY, Kong JR, Krische MJ. J. Org. Chem. 2007; 72: 1063
    • 5f Schwartz LA, Krische MJ. Isr. J. Chem. 2017; 58: 45
    • 5g Shibahara F, Krische MJ. Chem. Lett. 2008; 37: 1102
    • 5h Skucas E, Ngai MY, Komanduri V, Krische MJ. Acc. Chem. Res. 2007; 40: 1394
    • 6a Chen DF, Gong LZ. J. Am. Chem. Soc. 2022; 144: 2415
    • 6b Chen DF, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 6c Fang GC, Cheng YF, Yu ZL, Li ZL, Liu XY. Top. Curr. Chem. 2019; 377: 23
    • 6d Gupta GR, Shah J, Vadagaonkar KS, Lavekar AG, Kapdi AR. Org. Biomol. Chem. 2019; 17: 7596
    • 6e Liang QJ, Xu YH, Loh TP. Org. Chem. Front. 2018; 5: 2765
    • 6f Venugopala Nair V, Arunprasath D, Pandidurai S, Sekar G. Eur. J. Org. Chem. 2022; e202200244
    • 6g Wang PS, Chen DF, Gong LZ. Top. Curr. Chem. 2019; 378: 9
  • 7 Matsumura K, Arai N, Hori K, Saito T, Sayo N, Ohkuma T. J. Am. Chem. Soc. 2011; 133: 10696
  • 8 CCDC 2265393 (4c) and 2265394 (4d) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.