Synthesis
DOI: 10.1055/a-2270-3973
paper

Friedel–Crafts Alkylation of Indoles with Aldehydes/Ketones Catalyzed by Bromodiarylethene-Based Photoacid Generators

Alexey V. Zakharov
,
Sofia M. Timofeeva
,


Abstract

Diarylethenes (DAEs) with a bromine atom at the ring-closing position catalyze C–C bonding reactions induced by UV or sunlight. Upon photo-irradiation, bromodiarylethenes undergo 6π-electrocyclization (6π-EC), followed by the release of an acid species that catalyzes the double Friedel–Crafts addition of indoles to aldehydes and isatins to form the corresponding triarylmethanes and 3,3′-diarylindolin-2-ones. This protocol is applicable to a wide spectrum of aldehydes and isatins, as well as chalcones as electrophiles. Acid or oxidant-sensitive functional groups, such as ferrocene, 4-methoxyphenyl, thiophene, pyrrole are tolerated. Mechanistic studies show that light is needed to initiate the reaction.

Supporting Information



Publication History

Received: 16 January 2024

Accepted after revision: 16 February 2024

Accepted Manuscript online:
16 February 2024

Article published online:
06 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zivic N, Kuroishi PK, Dumur F, Gigmes D, Dove AP, Sardon H. Angew. Chem. Int. Ed. 2019; 58: 10410
    • 1b Tsuchimura T. J. Photopolym. Sci. Technol. 2020; 33: 15
    • 1c Shirai M, Tsunooka M. Prog. Polym. Sci. 1996; 21: 1
    • 1d Deng J, Bailey S, Jiang S, Ober CK. Chem. Mater. 2022; 34: 6170
    • 2a Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2b Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 2c Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 2d Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 3a Wang X, Tao P, Wang Q, Zhao R, Liu T, Hu Y, Hu Z, Wang Y, Wang J, Tang Y, Xu H, He X. Mater. Today 2023; 67: 299
    • 3b Ober CK, Käfer F, Yuan C. Polymer 2023; 280: 126020
    • 3c Wallraff GM, Hinsberg WD. Chem. Rev. 1999; 99: 1801
    • 3d Ito H. Adv. Polym. Sci. 2005; 172: 37
    • 3e Gates BG, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. Chem. Rev. 2005; 105: 1171
    • 3f Abu-Abdoun II, Ali A. Eur. Polym. J. 1993; 29: 1439
    • 3g Komoto K, Ishidoya M, Ogawa H, Sawada H, Okuma K, Ohata H. Polymer 1994; 35: 217
  • 4 Yue X, Yanez CO, Yao S, Belfield KD. J. Am. Chem. Soc. 2013; 135: 2112
  • 5 Kohse S, Neubauer A, Pazidis A, Lochbrunner S, Kragl U. J. Am. Chem. Soc. 2013; 135: 9407
    • 6a Yoshino K, Ozaki M, Sugimoto R. Jpn. J. Appl. Phys. 1985; 24: L373
    • 6b Yoshino K, Takahashi H, Sugimoto R. Jpn. J. Appl. Phys. 1991; 30: L657
    • 6c Venugopal G, Quan X, Johnson GE, Houlihan FM, Chin E, Nalamasu O. Chem. Mater. 1995; 7: 271
    • 7a Martin CJ, Rapenne G, Nakashima T, Kawai T. J. Photochem. Photobiol. C: Photochem. Rev. 2018; 34: 41
    • 7b Kuznetsova NA, Malkov GV, Gribov BG. Russ. Chem. Rev. 2020; 89: 173
    • 7c Mizutsu R, Asato R, Martin CJ, Yamada M, Nishikawa Y, Katao S, Yamada M, Nakashima T, Kawai T. J. Am. Chem. Soc. 2019; 141: 20043
    • 8a Fukumoto S, Nakashima T, Kawai T. Angew. Chem. Int. Ed. 2011; 50: 1565
    • 8b Fukumoto S, Nakashima T, Kawai T. Eur. J. Org. Chem. 2011; 5047
    • 8c Li R, Nakashima T, Galangau O, Iijima S, Kanazawa R, Kawai T. Chem. Asian J. 2015; 10: 1725
    • 8d Iijima S, Nakashima T, Kawai T. New J. Chem. 2016; 40: 10048
    • 10a Khalimon AY, Piers WE, Blackwell JM, Michalak DJ, Parvez M. J. Am. Chem. Soc. 2012; 134: 9601
    • 10b Khalimon AY, Shaw BK, Marwitz AJ. V, Piers WE, Blackwell JM, Parvez M. Dalton Trans. 2015; 44: 18196
    • 10c Tanaka T, Ando H. Jpn. Kokai Tokkyo Koho JP 2019211629 A 20191212, 2019
    • 10d Tanaka T, Ishida S, Nishida T. PCT Int. Appl WO 2018105537 A1 20180614, 2018
    • 11a Lvov AG, Yokoyama Y, Shirinian VZ. Chem. Rec. 2020; 20: 51
    • 11b Lvov AG, Yadykov AV, Lyssenko KA, Heinemann FW, Shirinian VZ, Khusniyarov MM. Org. Lett. 2020; 22: 604
    • 11c Yadykov AV, Scherbakov AM, Trofimova VV, Lvov AG, Markosyan AI, Zavarzin IV, Shirinian VZ. Org. Lett. 2019; 21: 9608
    • 11d Zakharov AV, Yadykov AV, Lvov AG, Mitina EA, Shirinian VZ. Org. Biomol. Chem. 2020; 18: 3098
    • 11e Zakharov AV, Lvov AG, Rostovtseva IA, Metelitsa AV, Chernyshev AV, Krayushkin MM, Yadykov AV, Shirinian VZ. Photochem. Photobiol. Sci. 2019; 18: 1101
    • 11f Shirinian VZ, Lonshakov IA, Zakharov AV, Lvov AG, Krayushkin MM. Synthesis 2019; 51: 414
    • 11g Scherbakov A, Zakharov AV, Mikhaevich EI, Salnikova DI, Yadykov AV, Kozhevnikova AA, Shirinian VZ. Chem. Res. Toxicol. 2022; 35: 2014
    • 11h Shirinian VZ, Kavun AM, Lvov AG, Zavarzin IV, Krayushkin MM. Synthesis 2017; 49: 1255
  • 12 Zakharov AV, Yadykov AV, Gaeva EB, Metelitsa AV, Shirinian VZ. J. Org. Chem. 2021; 86: 16806
    • 13a Praveen PJ, Parameswaran PS, Majik MS. Synthesis 2015; 47: 1827
    • 13b Tran PH, Nguyen X.-TT, Chau D.-KN. Asian J. Org. Chem. 2018; 7: 232
    • 13c Singh S, Mondal S, Vodnala N, Hazra CK. Green Chem. 2023; 25: 1014
    • 13d Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
    • 13e Imran S, Taha M, Ismail N. Curr. Med. Chem. 2015; 22: 4412
    • 13f Singh S, Kumar A, Nebhani L, Hazra CK. JACS Au 2023; 3: 3400
    • 14a Lee J. Nutr. Cancer 2019; 71: 992
    • 14b Dong Y, Lushnikova T, Golla RM, Wang X, Wang G. Bioorg. Med. Chem. 2017; 25: 864
    • 14c Wang G, Wang J, Xie Z, Chen M, Li L, Peng Y, Chen S, Li W, Deng B. Bioorg. Chem. 2017; 72: 228
    • 14d Singh S, Mondal S, Tiwari V, Karmakar T, Hazra CK. Chem. Eur. J. 2023; 29: e202300180
    • 14e Khan J, Tyagi A, Yadav N, Mahato R, Hazra ChK. J. Org. Chem. 2021; 86: 17833
    • 14f Jin J, Li Y, Xiang S, Fan W, Guo S, Huang D. Org. Biomol. Chem. 2021; 19: 4076
    • 15a Dey N. ACS Appl. Bio. Mater. 2021; 4: 6893
    • 15b Hong C, Firestone GL, Bjelanes LF. Biochem. Pharmacol. 2002; 63: 1085
    • 15c Bell R, Carmeli S, Sar N. J. Nat. Prod. 1994; 57: 1587
    • 15d Praveen C, DheenKumar P, Muralidharan D, Perumal PT. Bioorg. Med. Chem. Lett. 2010; 20: 7292
    • 16a Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Hazra CK. Chem. Eur. J. 2022; 28: e202104545
    • 16b Jamsheena V, Shilpa G, Saranya J, Harry NA, Lankalapalli RS, Priya S. Chem. Biol. Interact. 2016; 247: 11
    • 16c Grosso C, Cardoso AL, Lemos A, Varela J, Rodrigues MJ, Custódio L, Barreira L, Pinho e Melo TM. V. D. Eur. J. Med. Chem. 2015; 93: 9
    • 16d Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M. Clin. Cancer Res. 2009; 15: 543
    • 16e Safe S, Papineni S, Chintharlapalli S. Cancer Lett. 2008; 269: 326
    • 16f Tian X, Liu K, Zu X, Ma F, Li Z, Lee M, Chen H, Li Y, Zhao Y, Liu F, Oi N, Bode AM, Dong Z, Kim DJ. Cancer Lett. 2019; 448: 20
    • 17a Pillaiyar T, Köse M, Sylvester K, Weighardt H, Thimm D, Borges G, Förster I, von Kügelgen I, Müller CE. J. Med. Chem. 2017; 60: 3636
    • 17b Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N. Bioorg. Med. Chem. Lett. 2006; 16: 6302
  • 18 Zakharov AV, Timofeeva SM, Yadykov AV, Krayushkin MM, Shirinian VZ. Org. Biomol. Chem. 2023; 21: 2015
  • 19 Details of 1H NMR monitoring of photocatalysis of the reaction of 4-methoxybenzaldehyde (5a) with 2-methyl-1H-indole (6) in DCM by diarylethene 3 and 2-bromothiophene (4) under sunlight irradiation are given in the Supporting Information (Figure S1 and Figure S2).
  • 20 Yadykov AV, Lvov AG, Krayushkin MM, Zakharov AV, Shirinian VZ. J. Org. Chem. 2021; 86: 10023
  • 21 Zakharov AV, Gaeva EB, Lvov AG, Metelitsa AV, Shirinian VZ. J. Org. Chem. 2017; 82: 8651
    • 22a Lvov AG, Shirinian VZ, Zakharov AV, Krayushkin MM, Kachala VV, Zavarzin IV. J. Org. Chem. 2015; 80: 11491
    • 22b Lvov AG, Kavun AM, Kachala VV, Lyssenko KA, Shirinian VZ. Org. Biomol. Chem. 2019; 17: 4990
  • 23 The absorption spectrum changes during UV (365 nm) irradiation of acetonitrile solution of diarylethenes 13 and 2-bromothiophene 4 are given in the Supporting Information (see Chapter IV).
  • 24 Kadu VD, Gund MS, Godage AS. ChemistrySelect 2021; 6: 11954
  • 25 Zhao Y.-Sh, Ruan H.-L, Wang X.-Y, Chen C, Song P.-F, Lu Ch.-W, Zou Li-W. RSC Adv. 2019; 9: 40168
  • 26 Honarmand M, Esmaeili E. J. Mol. Liq. 2017; 225: 741
  • 27 Muenzner JK, Ahmad A, Rothemund M, Schrüfer S, Padhye S, Sarkar FH, Schobert R, Biersack B. Appl. Organometal. Chem. 2016; 30: 441
  • 28 Nagre DT, Mali SN, Thorat BR, Thorat SA, Chopade AR, Farooqui M, Agrawal B. Curr. Enzyme Inhib. 2021; 17: 127
  • 29 Ríos-Guerra H, Penieres-Carrillo G, Barrera-Téllez F, Martínez-Záldivar A, Pérez-Flores J, Hipólito-Nájera AR, Luna-Mora RA. J. Braz. Chem. Soc. 2022; 33: 60
  • 30 Devia TJ, Singh TP, Singh RR, Sharma KG, Singh OM. Russ. J. Org. Chem. 2021; 57: 255
  • 31 Zhu Y.-p, Liu M.-c, Jia F.-c, Yuan J.-j, Gao Q.-h, Lian M, Wu A.-x. Org. Lett. 2012; 14: 3392
  • 32 Srihari G, Murthy MM. Chem. Lett. 2008; 37: 268
  • 33 Hu B.-L, Hu H.-N, Tang R.-Y. J. Chem. Pharm. Res. 2012; 36: 468
  • 34 Gu D.-g, Ji S.-j, Wang H.-x, Xu Q.-y. Synth. Commun. 2008; 38: 1212