Synlett
DOI: 10.1055/a-2251-4145
letter

Synthesis and α-Functionalisation of Cyclic Imines

Ze Kuang
a   School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
,
Xiao-Bo Ding
a   School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
b   The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
,
a   School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
b   The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
,
a   School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
b   The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
› Author Affiliations
Financial support from the Maurice Wilkins Centre for Molecular Biodiscovery and the Royal Society Te Aparangi Marsdon Fund is gratefully acknowledged.


Abstract

α-Functionalisation of cyclic imines is explored. The cyclic imine substrates are synthesised from their respective halonitrile precursors using a nucleophilic addition/cyclisation sequence. Selective monohalogenation of the cyclic imines yields α-haloimines, which serve as a platform to obtain various α-hydroxyimine derivatives. In addition, an unusual tautomerisation and oxidation sequence is observed in the attempted preparation of α-hydroxyimines.

Supporting Information



Publication History

Received: 16 November 2023

Accepted after revision: 22 January 2024

Accepted Manuscript online:
22 January 2024

Article published online:
13 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Guéret SM, Brimble MA. Nat. Prod. Rep. 2010; 27: 1350
  • 2 Hu T, Curtis JM, Walter JA, Wright JL. Tetrahedron Lett. 1996; 37: 7671
  • 3 Rundberget T, Aasen JA. B, Selwood AI, Miles CO. Toxicon 2011; 58: 700
  • 4 Roach JS, LeBlanc P, Lewis NI, Munday R, Quilliam MA, MacKinnon SL. J. Nat. Prod. 2009; 72: 1237
  • 5 Takada N, Umemura N, Suenaga K, Chou T, Nagatsu A, Haino T, Yamada K, Uemura D. Tetrahedron Lett. 2001; 42: 3491
  • 6 Selwood AI, Miles CO, Wilkins AL, van Ginkel R, Munday R, Rise F, McNabb P. J. Agric. Food Chem. 2010; 58: 6532
  • 7 Seki T, Satake M, Mackenzie L, Kaspar HF, Yasumoto T. Tetrahedron Lett. 1995; 36: 7093
  • 8 Miles CO, Wilkins AL, Stirling DJ, MacKenzie AL. J. Agric. Food Chem. 2000; 48: 1373
  • 9 Miles CO, Wilkins AL, Stirling DJ, MacKenzie AL. J. Agric. Food Chem. 2003; 51: 4838
  • 10 Takada N, Umemura N, Suenaga K, Uemura D. Tetrahedron Lett. 2001; 42: 3495
  • 11 Lu C.-K, Lee G.-H, Huang R, Chou H.-N. Tetrahedron Lett. 2001; 42: 1713
  • 12 Hermawan I, Higa M, Hutabarat PU. B, Fujiwara T, Akiyama K, Kanamoto A, Haruyama T, Kobayashi N, Higashi M, Suda S. Mar. Drugs 2019; 17: 353
  • 13 Selwood AI, Wilkins AL, Munday R, Shi F, Rhodes LL, Holland PT. Tetrahedron Lett. 2013; 54: 4705
  • 14 Fribley AM, Xi Y, Makris C, Alves-de-Souza C, York R, Tomas C, Wright JL, Strangman WK. ACS Med. Chem. Lett. 2018; 10: 175
  • 15 Brooke DG, Cervin G, Champeau O, Harwood DT, Pavia H, Selwood AI, Svenson J, Tremblay LA, Cahill PL. Biofouling 2018; 34: 950
  • 16 Buttery R, Ling LC, Juliano BO. Chem. Ind. (London) 1982; 23: 958
  • 17 Buttery RG, Ling LC, Juliano BO, Turnbaugh JG. J. Agric. Food Chem. 1983; 31: 823
  • 18 Adams A, De Kimpe N. Chem. Rev. 2006; 106: 2299
  • 19 Fuganti C, Gatti FG, Serra S. Tetrahedron 2007; 63: 4762
  • 20 Behr J.-B. Tetrahedron Lett. 2009; 50: 4498
  • 21 Xu F, Chung JY, Moore JC, Liu Z, Yoshikawa N, Hoerrner RS, Lee J, Royzen M, Cleator E, Gibson AG. Org. Lett. 2013; 15: 1342
  • 22 Williams SG, Bhadbhade M, Bishop R, Ung AT. Tetrahedron 2017; 73: 116
  • 23 Voskressensky LG, Borisova TN, Matveeva MD, Khrustalev VN, Titov AA, Aksenov AV, Dyachenko SV, Varlamov AV. Tetrahedron Lett. 2017; 58: 877
  • 24 Tang J, Li W, Chiu TY, Martinez-Pena F, Luo Z, Chong CT, Wei Q, Gazaniga N, West TJ, See YY, Lairson LL, Parker CG, Baran PS. Nature 2023; 622: 507
  • 25 Tehrani KA, Borremans D, De Kimpe N. Tetrahedron 1999; 55: 4133
  • 26 Ding X.-B, Wung A, Furkert DP, Brimble MA. Org. Biomol. Chem. 2023; 21: 6008
  • 27 Freeman JL, Li FF, Furkert DP, Brimble MA. Synlett 2020; 31: 657
  • 28 Freeman JL, Brimble MA, Furkert DP. Org. Biomol. Chem. 2019; 17: 2705
  • 29 Wang Z, Krogsgaard-Larsen N, Daniels B, Furkert DP, Brimble MA. J. Org. Chem. 2016; 81: 10366
  • 30 Earl AD, Li FF, Ma C, Furkert DP, Brimble MA. Org. Biomol. Chem. 2023; 21: 1222
  • 31 Fry DF, Fowler CB, Dieter RK. Synlett 1994; 836
  • 32 Gallulo V, Dimas L, Zezza CA, Smith MB. Org. Prep. Proced. Int. 1989; 21: 297
  • 33 Jost T, Heymann T, Glomb MA. J. Agric. Food Chem. 2019; 67: 3046