Synlett 2024; 35(06): 677-683
DOI: 10.1055/a-2212-7704
cluster
Special Issue to Celebrate the Centenary Year of Prof. Har Gobind Khorana

Facilitated Synthetic Access to Boronic Acid-Modified Nucleoside Triphosphates and Compatibility with Enzymatic DNA Synthesis

Germain Niogret
a   Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
c   Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
,
a   Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
,
Fabienne Levi-Acobas
a   Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
,
b   Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique, UMR CNRS 3523, 28 rue du Docteur Roux, CEDEX 15, 75724 Paris, France
,
c   Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
,
a   Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
› Author Affiliations
G.N. gratefully acknowledges a fellowship from the doctoral school MTCI from Université Paris Cité. The authors gratefully acknowledge financial support from Institut Pasteur. M.H. acknowledges financially support from the ANR grant PEPR REV CNRS MOLECULARXIV.


Abstract

Decorating nucleic acids with boronic acids can extend the usefulness of oligonucleotide-based tools to the development of medical imaging agents, the promotion of binding of aptamers to markedly more challenging targets, or the detection of (poly)saccharides. However, due to the hygroscopic nature and high intrinsic reactivity of boronic acids, protocols for their introduction into nucleic acids are scarce. Here, we have explored various synthetic routes for the crafting of nucleoside triphosphates equipped with phenylboronic acids. Strain-promoted azide–alkyne cycloaddition appears to be the method of choice for this purpose and it enabled us to prepare a modified nucleotide. Enzymatic DNA synthesis permitted the introduction of up to thirteen boronic acid residues in oligonucleotides, which bodes well for its extension to SELEX and related methods of in vitro selection of functional nucleic acids.

Supporting Information



Publication History

Received: 27 July 2023

Accepted after revision: 16 November 2023

Accepted Manuscript online:
16 November 2023

Article published online:
14 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Zhou JH, Rossi J. Nat. Rev. Drug Discovery 2017; 16: 181
  • 2 Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang B.-T, Lu A, Zhang G. ACS Appl. Mater. Interfaces 2021; 13: 9500
    • 3a Hollenstein M. Curr. Opin. Chem. Biol. 2019; 52: 93
    • 3b Freund N, Fürst MJ. L. J, Holliger P. Curr. Opin. Biotechnol. 2022; 74: 129
    • 3c Huang P.-JJ, Liu JW. ChemistryOpen 2020; 9: 1046
    • 5a Ren Q, Ga L, Lu Z, Ai J, Wang T. Mater. Chem. Front. 2020; 4: 1569
    • 5b Renzl C, Kakoti A, Mayer G. Angew. Chem. Int. Ed. 2020; 59: 22414
    • 5c Liu C.-G, Wang Y, Liu P, Yao Q.-L, Zhou Y.-Y, Li C.-F, Zhao Q, Liu G.-H, Zhang X.-L. ACS Chem. Biol. 2020; 15: 1554
    • 5d Zhang L, Li L, Wang X, Liu H, Zhang Y, Xie T, Zhang H, Li X, Peng T, Sun X, Dai J, Liu J, Wu W, Ye M, Tan W. Mol. Ther.–Nucleic Acids 2022; 30: 66
    • 5e Maru B, Nadeau L, McKeague M. ACS Pharmacol. Transl. Sci. 2021; 4: 1716
    • 6a Gragoudas ES, Adamis AP, Cunningham ET. Jr, Feinsod M, Guyer DR, Neova VI. S. O. N. Engl. J. Med. 2004; 351: 2805
    • 6b Drolet DW, Green LS, Gold L, Janjic N. Nucleic Acid Ther. 2016; 26: 127
  • 7 McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Chem. Soc. Rev. 2021; 50: 5126
  • 8 Cho EA, Moloney FJ, Cai H, Au-Yeung A, China C, Scolyer RA, Yosufi B, Raftery MJ, Deng JZ, Morton SW, Hammond PT, Arkenau HT, Damian DL, Francis DJ, Chesterman CN, Barnetson RS, Halliday GM, Khachigian LM. Lancet 2013; 381: 1835
  • 9 Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, Rogon C, Zeitvogel J, Zhang N, Bille J, Homburg U, Turowska A, Bachert C, Werfel T, Buhl R, Renz J, Garn H, Renz H. N. Engl. J. Med. 2015; 372: 1987
    • 10a Sola M, Menon AP, Moreno B, Meraviglia-Crivelli D, Soldevilla MM, Cartón-García F, Pastor F. Mol. Ther.–Nucleic Acids 2020; 21: 192
    • 10b Röthlisberger P, Hollenstein M. Adv. Drug Delivery Rev. 2018; 134: 3
    • 10c Paunovska K, Loughrey D, Dahlman JE. Nat. Rev. Genet. 2022; 23: 265
    • 10d Kovacevic KD, Gilbert JC, Jilma B. Adv. Drug Delivery Rev. 2018; 134: 36
    • 11a Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew S.-Y, McLaughlin SH, Herdewijn P, Holliger P. Science 2012; 336: 341
    • 11b Kimoto M, Yamashige R, Matsunaga K.-i, Yokoyama S, Hirao I. Nat. Biotechnol. 2013; 31: 453
    • 11c Biondi E, Lane JD, Das D, Dasgupta S, Piccirilli JA, Hoshika S, Bradley KM, Krantz BA, Benner SA. Nucleic Acids Res. 2016; 44: 9565
    • 11d Taylor AI, Wan CJ. K, Donde MJ, Peak-Chew S.-Y, Holliger P. Nat. Chem. 2022; 14: 1295
    • 11e Rajasree SC, Takezawa Y, Shionoya M. Chem. Commun. 2023; 59: 1006
  • 12 Wang Y, Nguyen K, Spitale RC, Chaput JC. Nat. Chem. 2021; 13: 319
    • 13a McKenzie LK, Flamme M, Felder PS, Karges J, Bonhomme F, Gandioso A, Malosse C, Gasser G, Hollenstein M. RSC Chem. Biol. 2022; 3: 85
    • 13b Canoura J, Yu H, Alkhamis O, Roncancio D, Farhana R, Xiao Y. J. Am. Chem. Soc. 2021; 143: 805
    • 13c Xu G, Zhao J, Liu N, Yang M, Zhao Q, Li C, Liu M. Nucleic Acids Res. 2019; 47: 5963
    • 14a Paul S, Wong AA. W. L, Liu LT, Perrin DM. ChemBioChem 2022; 23: e202100600
    • 14b Borsenberger V, Kukwikila M, Howorka S. Org. Biomol. Chem. 2009; 7: 3826
    • 14c Dunn MR, Larsen AC, Zahurancik WJ, Fahmi NE, Meyers M, Suo Z, Chaput JC. J. Am. Chem. Soc. 2015; 137: 4014
    • 14d Ren XM, El-Sagheer AH, Brown T. Nucleic Acids Res. 2016; 44: e79
    • 14e Eremeeva E, Abramov M, Marlière P, Herdewijn P. Org. Biomol. Chem. 2017; 15: 168
    • 14f Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Angew. Chem. Int. Ed. 2016; 55: 7515
    • 14g Ondruš M, Sýkorová V, Hocek M. Chem. Commun. 2022; 58: 11248
    • 14h Figazzolo C, Ma YF, Tucker JH. R, Hollenstein M. Org. Biomol. Chem. 2022; 20: 8125
    • 14i Li Q, Maola VA, Chim N, Hussain J, Lozoya-Colinas A, Chaput JC. J. Am. Chem. Soc. 2021; 143: 17761
    • 14j Hervey JR. D, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. RSC Chem. Biol. 2022; 3: 1209
  • 15 Hollenstein M. Org. Biomol. Chem. 2013; 11: 5162
  • 16 Balintová J, Špaček J, Pohl R, Brázdová M, Havran L, Fojta M, Hocek M. Chem. Sci. 2015; 6: 575
  • 17 Cheung Y.-W, Röthlisberger P, Mechaly AE, Weber P, Levi-Acobas F, Lo Y, Wong AW. C, Kinghorn AB, Haouz A, Savage GP, Hollenstein M, Tanner JA. Proc. Natl. Acad. Sci. U. S. A. 2020; 117: 16790
  • 18 Kodr D, Yenice CP, Simonova A, Saftić DP, Pohl R, Sýkorová V, Ortiz M, Havran L, Fojta M, Lesnikowski ZJ, O’Sullivan CK, Hocek M. J. Am. Chem. Soc. 2021; 143: 7124
    • 19a Röthlisberger P, Levi-Acobas F, Sarac I, Baron B, England P, Marlière P, Herdewijn P, Hollenstein M. Chem. Commun. 2017; 53: 13031
    • 19b Jakubovska J, Tauraite D, Birštona L, Meškys R. Nucleic Acids Res. 2018; 46: 5911
    • 20a Nakama T, Takezawa Y, Shionoya M. Chem. Commun. 2021; 57: 1392
    • 20b Heddinga MH, Müller J. Org. Biomol. Chem. 2022; 20: 4787
    • 20c Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L, Gasser G, Marlière P, Herdewijn P, Hollenstein M. ACS Chem. Biol. 2020; 15: 2872
    • 20d Kaul C, Müller M, Wagner M, Schneider S, Carell T. Nat. Chem. 2011; 3: 794
    • 20e Kumara GS. R, Babagond V, Seo YJ. Sens. Actuators, B 2022; 369: 132270
    • 21a Krüger S, Meier C. Eur. J. Org. Chem. 2013; 1158
    • 21b Barbeyron R, Vasseur J.-J, Smietana M. Chem. Sci. 2015; 6: 542
  • 22 Bull SD, Davidson MG, van den Elsen JM. H, Fossey JS, Jenkins AT. A, Jiang Y.-B, Kubo Y, Marken F, Sakurai K, Zhao JZ, James TD. Acc. Chem. Res. 2013; 46: 312
  • 23 Li M, Lin N, Huang Z, Du L, Altier C, Fang H, Wang B. J. Am. Chem. Soc. 2008; 130: 12636
    • 24a Horiya S, MacPherson IS, Krauss IJ. Nat. Chem. Biol. 2014; 10: 990
    • 24b Sun X, Lee H, Lee S, Tan KL. Nat. Chem. 2013; 5: 790
    • 24c Debiais M, Lelievre A, Vasseur J.-J, Müller S, Smietana M. Chem. Eur. J. 2021; 27: 1138
    • 24d Jang EK, Son RG, Pack SP. Nucleic Acids Res. 2019; 47: e102
  • 25 Perrin DM. Acc. Chem. Res. 2016; 49: 1333
    • 26a Debiais M, Vasseur J.-J, Smietana M. Chem. Rec. 2022; 22: e202200085
    • 26b Zhao C, Wang H, Zhao B, Li C, Yin R, Song M, Liu B, Liu Z, Jiang G. Nucleic Acids Res. 2014; 42: e81
    • 26c Gimenez Molina A, Barvik I, Müller S, Vasseur J.-J, Smietana M. Org. Biomol. Chem. 2018; 16: 8824
    • 26d Lelièvre-Büttner A, Schnarr T, Debiais M, Smietana M, Müller S. Chem. Eur. J. 2023; e202300196
  • 27 António JP. M, Russo R, Parente Carvalho C, Cal PM. S. D, Gois PM. P. Chem. Soc. Rev. 2019; 48: 3513
  • 28 Pan G, Guo B, Ma Y, Cui W, He F, Li B, Yang H, Shea KJ. J. Am. Chem. Soc. 2014; 136: 6203
  • 29 Horiya S, Bailey JK, Temme JS, Schippe YV. G, Krauss IJ. J. Am. Chem. Soc. 2014; 136: 5407
  • 30 Lin N, Yan J, Huang Z, Altier C, Li MY, Carrasco N, Suyemoto M, Johnston L, Wang SM, Wang Q, Fang H, Caton-Williams J, Wang BH. Nucleic Acids Res. 2007; 35: 1222
  • 31 Su L, Chen T, Xue T, Sheng A, Cheng L, Zhang J. ACS Appl. Mater. Interfaces 2020; 12: 7650
  • 32 Sýkorová V, Tichý M, Hocek M. ChemBioChem 2022; 23: e202100608
    • 33a Wong AA. W. L, Lozada J, Lepage ML, Zhang C, Merkens H, Zeisler J, Lin K.-S, Bénard F, Perrin DM. RSC Med. Chem. 2020; 11: 569
    • 33b Lozada J, Lin WX, Cao-Shen RM, Tai AR, Perrin DM. Angew. Chem. Int. Ed. 2023; 62: e202215371
  • 34 Steinmeyer J, Wagenknecht H.-A. Bioconjugate Chem. 2018; 29: 431
  • 35 Cheng Y, Dai C, Peng H, Zheng S, Jin S, Wang B. Chem. Asian J. 2011; 6: 2747
  • 36 Dai C, Wang L, Sheng J, Peng H, Draganov AB, Huang Z, Wang B. Chem. Commun. 2011; 47: 3598
    • 37a Gierlich J, Gutsmiedl K, Gramlich PM. E, Schmidt A, Burley GA, Carell T. Chem. Eur. J. 2007; 13: 9486
    • 37b El-Sagheer AH, Brown T. Chem. Soc. Rev. 2010; 39: 1388
    • 37c Fantoni NZ, El-Sagheer AH, Brown T. Chem. Rev. 2021; 121: 7122
    • 37d Siegl J, Plückthun O, Mayer G. RSC Chem. Biol. 2022; 3: 288
    • 38a Merkel M, Arndt S, Ploschik D, Cserép GB, Wenge U, Kele P, Wagenknecht HA. J. Org. Chem. 2016; 81: 7527
    • 38b Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 16793
    • 38c Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 38d Winz M.-L, Linder EC, André T, Becker J, Jäschke A. Nucleic Acids Res. 2015; 43: e110
  • 39 Akgun B, Hall DG. Angew. Chem. Int. Ed. 2016; 55: 3909
  • 40 Debiais M, Vasseur J.-J, Müller S, Smietana M. Synthesis 2020; 52: 2962
  • 41 Ligasová A, Liboska R, Friedecký D, Mičová K, Adam T, Oždian T, Rosenberg I, Koberna K. Open Biol. 2016; 6: 150172
  • 42 Röthlisberger P, Levi-Acobas F, Hollenstein M. Bioorg. Med. Chem. Lett. 2017; 27: 897
  • 43 Cox PA, Reid M, Leach AG, Campbell AD, King EJ, Lloyd-Jones GC. J. Am. Chem. Soc. 2017; 139: 13156
  • 44 Wang L, Dai C, Burroughs SK, Wang SL, Wang B. Chem. Eur. J. 2013; 19: 7587
  • 45 Modified Nucleotide 3 5-EdUTP (4.7 mg, 9.5 μmol) was dissolved in H2O (500 μL). To this solution, the azide 9 (5 mg, 19 μmol, 2 equiv) and EtOH (500 μL) were added. Finally, a freshly prepared solution of TBTA (3 mg, 5.7 μmol, 0.6 equiv) and CuI (1 mg, 2.8 μmol, 0.3 equiv) in DMF (1 mL) was added, and the mixture was stirred at RT. After 3.5 h, additional catalyst TBTA (3 mg, 5.7 μmol, 0.6 equiv) and CuI (1 mg, 2.8 μmol, 0.3 equiv) in DMF (100 μL) was added, and the mixture was stirred overnight in a refrigerator. The product was precipitated with a 2% solution of NaClO4 in acetone (10 mL) and centrifuged. The pellet was redissolved in 30% aq NH4OH (2 mL) and the solution was stirred for 2 h. The mixture was then concentrated, pre-purified by precipitation with a 2% solution of NaClO4 in acetone (10 mL), and purified by reverse-phase HPLC chromatography (30% B in 20 min; Buffer A: 20 mM Et3NHOAc in H2O; Buffer B: 30% 20 mM Et3NHOAc in H2O/70% MeCN) to give a white solid; yield: 2 mg (29%). 1H NMR (D2O): δ = 2.43 (s, 2 H,), 3.04 (m, 2 H), 3.87 (s, 2 H), 4.21 (s, 4 H), 6.31 (s, 1 H), 6.92 (s, 1.5 H), 7.59 (s, 2 H), 7.80 (s, 0.5 H), 8.22 (s, 1 H), 8.39 (br s, 1 H). 31P NMR (D2O): δ = –4.93 (br s, 1 P), –9.89 (br s, 1 P), –21.03 (br s, 1 P). HRMS (ESI): m/z [M–B(OH)] calcd for C20H24N6O16P3: 697.0467; found: 697.0253. MALDI: m/z [M–B(OH)] calcd for C20H24N6O16P3: 697.0467; found: 696.546.
  • 46 Kuzmin A, Poloukhtine A, Wolfert MA, Popik VV. Bioconjugate Chem. 2010; 21: 2076
  • 47 Jewett JC, Sletten EM, Bertozzi CR. J. Am. Chem. Soc. 2010; 132: 3688
  • 48 Modified Nucleotide 4 A 1.5 ml Eppendorf tube was charged with 10 (3.95 mg, 0.017 mmol, 5 equiv) dissolved in DMF (100 μL DMF, then 98.5 μL of 34.2 mM stock solution of dUCOTP 12 (3.2 mg, 0.003 mmol, 1 equiv) was added, and the mixture was shaken at 1000 rpm for 12 h. The DMF was then evaporated in vacuo, and the crude product was resuspended in H2O (200 µL). The mixture was poured into a 2% solution of NaClO4 in acetone (12 mL) to precipitate the crude product, and the resulting mixture was centrifuged at 4000 rpm for 15 min. The supernatant was discarded and the crude product was dissolved in H2O (1 mL) and purified by semipreparative reverse-phase HPLC (Kinetex 5 μm C18 100 Å LC column: 10–50% B in 15 min, hold at 50% for 10 min, 50–90% B in 5 min, 50–90% B in 5 min; Buffer A: 20 mM Et3NHOAc in H2O; Buffer B: 30% 20 mM Et3NHOAc in H2O–70% MeCN) to give a white solid; yield: 2.82 mg 71%). 1H NMR (500 MHz, D2O): δ = 7.97 (d, J = 17.7 Hz, 1 H), 7.89–7.86 (m, 2 H), 7.72–7.62 (m, 4 H), 7.58–7.38 (m, 7 H), 6.83 (d, J = 7.8 Hz, 1 H), 6.10 (q, J = 6.4 Hz, 1 H), 5.34 (d, J = 17.3 Hz, 1 H), 5.07 (dd, J = 21.1, 11.0 Hz, 1 H), 4.31–4.10 (m, 9 H), 3.98 (d, J = 14.7 Hz, 2 H), 3.47–3.37 (m, 1 H), 2.41–2.04 (m, 8 H), 1.88 (t, J = 7.3 Hz, 1 H), 1.67 (d, J = 15.5, 7.5 Hz, 3 H), 1.59–1.50 (m, 3 H). 31P NMR (202 MHz, D2O): δ = –10.85 (d, J = 19.8 Hz), –11.54 (d, J = 20.6 Hz), –23.27 (t, J = 20.3 Hz). HRMS (ESI): m/z [M – B(OH)] calcd for C48H56N9O19P3: 1155.29; found: 1155.2892.
  • 49 Kielkowski P, Cahová H, Pohl R, Hocek M. Bioorg. Med. Chem. 2016; 24: 1268
  • 50 Sarac I, Hollenstein M. ChemBioChem 2019; 20: 860
  • 51 Wang K, Wang D, Ji K, Chen W, Zheng Y, Dai C, Wang B. Org. Biomol. Chem. 2015; 13: 909
  • 52 Figazzolo C, Bonhomme F, Saidjalolov S, Ethève-Quelquejeu M, Hollenstein M. Molecules 2022; 27: 8927