Nuklearmedizin 2023; 62(05): 306-313
DOI: 10.1055/a-2157-6670
Review

Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities

Multiparametrische onkologische Hybridbildgebung: Herausforderungen und Chancen für maschinelles Lernen
1   Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
,
Tobias Hepp
1   Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
,
Ferdinand Seith
2   Department of Diagnostic and Interventional Radiology, University Hospitals Tubingen, Germany
› Author Affiliations

Abstract

Background Machine learning (ML) is considered an important technology for future data analysis in health care.

Methods The inherently technology-driven fields of diagnostic radiology and nuclear medicine will both benefit from ML in terms of image acquisition and reconstruction. Within the next few years, this will lead to accelerated image acquisition, improved image quality, a reduction of motion artifacts and – for PET imaging – reduced radiation exposure and new approaches for attenuation correction. Furthermore, ML has the potential to support decision making by a combined analysis of data derived from different modalities, especially in oncology. In this context, we see great potential for ML in multiparametric hybrid imaging and the development of imaging biomarkers.

Results and Conclusion In this review, we will describe the basics of ML, present approaches in hybrid imaging of MRI, CT, and PET, and discuss the specific challenges associated with it and the steps ahead to make ML a diagnostic and clinical tool in the future.

Key Points:

  • ML provides a viable clinical solution for the reconstruction, processing, and analysis of hybrid imaging obtained from MRI, CT, and PET.

Zusammenfassung

Hintergrund Maschinelles Lernen (ML) gilt als eine wichtige Technologie für die zukünftige Datenanalyse im Gesundheitswesen.

Methode Die inhärent technologiegetriebene diagnostische Radiologie und Nuklearmedizin werden sowohl bei der Bildaufnahme als auch bei der Bildrekonstruktion von ML profitieren. In den nächsten Jahren wird dies zu einer beschleunigten Bildaufnahme, einer verbesserten Bildqualität, einer Reduzierung von Bewegungsartefakten und – für die PET-Bildgebung – zu einer reduzierten Strahlenexposition und neuen Ansätzen zur Schwächungskorrektur führen. Darüber hinaus hat ML das Potenzial, die Entscheidungsfindung durch eine kombinierte Analyse von Daten aus verschiedenen Modalitäten, insbesondere im Bereich der Onkologie, zu unterstützen. In diesem Zusammenhang sehen wir ein großes Potenzial für ML in der multiparametrischen Hybrid-Bildgebung und der Entwicklung von bildgebenden Biomarkern.

Ergebnisse und Schlussfolgerung In diesem Review werden wir die Grundlagen von ML beschreiben, Ansätze in der hybriden Bildgebung von MRT, CT und PET vorstellen und die damit verbundenen spezifischen Herausforderungen und die kommenden Schritte diskutieren, um ML in Zukunft zu einem diagnostischen und klinischen Werkzeug zu machen.

Kernaussagen:

  • ML bietet eine praktikable klinische Lösung für die Rekonstruktion, Verarbeitung und Analyse von Hybrid-Bildgebung der MRT, CT und PET.



Publication History

Received: 22 June 2021

Accepted: 25 November 2021

Article published online:
06 October 2023

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Annapureddy AR, Angraal S, Caraballo C. et al The National Institutes of Health funding for clinical research applying machine learning techniques in 2017. NPJ digital medicine 2020; 3: 13-13
  • 2 Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM standard. Eur Radiol 2002; 12: 920-927
  • 3 Willemink MJ, Noël PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol 2019; 29: 2185-2195
  • 4 Lee JS. A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences 2021; 5: 160-184
  • 5 Syeda-Mahmood T. Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology. J Am Coll Radiol 2018; 15: 569-576
  • 6 Hosny A, Parmar C, Quackenbush J. et al Artificial intelligence in radiology. Nat Rev Cancer 2018; 18: 500-510
  • 7 Hofmarcher T, Lindgren P, Wilking N. et al The cost of cancer in Europe 2018. Eur J Cancer 2020; 129: 41-49
  • 8 Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat Rev Clin Oncol 2021; 18: 297-312
  • 9 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016; 278: 563-577
  • 10 Bishop C. Pattern recognition and machine learning. Springer; 2006
  • 11 Kingma DP, Welling M. An introduction to variational autoencoders. In: Now Publishers Inc; 2019: 307–392
  • 12 Kramer MA. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 1991; 37: 233-243
  • 13 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006; 313: 504-507
  • 14 Goodfellow IJ, Pouget-Abadie J, Mirza M. et al Generative adversarial nets. In, Advances in Neural Information Processing Systems. January ed; 2014: 2672–2680
  • 15 Pan SJ, Yang Q. A survey on transfer learning. In; 2010: 1345–1359
  • 16 Raghu M, Zhang C, Kleinberg J. et al Transfusion: Understanding transfer learning for medical imaging. In; 2019
  • 17 Tan C, Sun F, Kong T. et al A survey on deep transfer learning. In, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Springer Verlag; 2018: 270–279
  • 18 Brendan McMahanH, Moore E, Ramage D. et al Communication-efficient learning of deep networks from decentralized data. In; 2017
  • 19 Li T, Sahu AK, Talwalkar A. et al Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing Magazine 2020; 37: 50-60
  • 20 Yang Q, Liu Y, Chen T. et al Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology 2019; 10: 1-19
  • 21 Rieke N, Hancox J, Li W. et al The future of digital health with federated learning. npj Digital Medicine 2020; 3: 1-7
  • 22 Lambin P, Leijenaar RTH, Deist TM. et al Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology 2017; 14: 749-762
  • 23 Hammernik K, Klatzer T, Kobler E. et al Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine 2018; 79: 3055-3071
  • 24 Zhu B, Liu JZ, Cauley SF. et al Image reconstruction by domain-transform manifold learning. Nature 2018; 555: 487-492
  • 25 Sandino CM, Cheng JY, Chen F. et al Compressed Sensing: From Research to Clinical Practice with Deep Neural Networks: Shortening Scan Times for Magnetic Resonance Imaging. IEEE Signal Processing Magazine 2020; 37: 117-127
  • 26 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine 2007; 58: 1182-1195
  • 27 Knoll F, Hammernik K, Zhang C. et al Deep learning methods for parallel magnetic resonance image reconstruction. arXiv preprint arXiv:190401112 2019, DOI:
  • 28 Hyun CM, Kim HP, Lee SM. et al Deep learning for undersampled MRI reconstruction. Phys Med Biol 2018; 63: 135007
  • 29 Lin DJ, Johnson PM, Knoll F. et al Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. J Magn Reson Imag 2020; DOI: 10.1002/jmri.27078.
  • 30 Küstner T, Fuin N, Hammernik K. et al CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Scientific Reports 2020; 10: 1-13
  • 31 Sandino CM, Lai P, Vasanawala SS. et al Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magnetic Resonance in Medicine 2020, DOI: mrm.28420-mrm.28420
  • 32 Kaplan S, Zhu YM. Full-Dose PET Image Estimation from Low-Dose PET Image Using Deep Learning: a Pilot Study. J Digit Imaging 2019; 32: 773-778
  • 33 Katsari K, Penna D, Arena V. et al Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI Physics 2021; 8: 25
  • 34 Häggström I, Schmidtlein CR, Campanella G. et al DeepPET: A deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Medical Image Analysis 2019; 54: 253-262
  • 35 Wang YJ, Baratto L, Hawk KE. et al Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol Imaging 2021; DOI: 10.1007/s00259-021-05197-3.
  • 36 Knoll F, Holler M, Koesters T. et al Joint MR-PET Reconstruction Using a Multi-Channel Image Regularizer. IEEE Trans Med Imaging 2017; 36: 1-16
  • 37 Liu F, Jang H, Kijowski R. et al Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging. Radiology 2018; 286: 676-684
  • 38 Armanious K, Hepp T, Küstner T. et al Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with Generative Adversarial Networks. EJNMMI Research 2020; 10: 53
  • 39 Catana C. Motion correction options in PET/MRI. Semin Nucl Med 2015; 45: 212-223
  • 40 Grimm R, Furst S, Souvatzoglou M. et al Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal 2015; 19: 110-120
  • 41 Lamare F, Ledesma Carbayo MJ, Cresson T. et al List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007; 52: 5187-5204
  • 42 Manber R, Thielemans K, Hutton BF. et al Practical PET Respiratory Motion Correction in Clinical PET/MR. J Nucl Med 2015; 56: 890-896
  • 43 Küstner T, Schwartz M, Martirosian P. et al MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017; 42: 129-144
  • 44 Gratz M, Ruhlmann V, Umutlu L. et al Impact of respiratory motion correction on lesion visibility and quantification in thoracic PET/MR imaging. PLOS ONE 2020; 15: e0233209
  • 45 Marin T, Djebra Y, Han PK. et al Motion correction for PET data using subspace-based real-time MR imaging in simultaneous PET/MR. Phys Med Biol 2020; 65: 235022
  • 46 Kolbitsch C, Prieto C, Tsoumpas C. et al A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR. Med Phys 2014; 41: 082304
  • 47 Munoz C, Kolbitsch C, Reader AJ. et al MR-Based Cardiac and Respiratory Motion-Compensation Techniques for PET-MR Imaging. PET Clin 2016; 11: 179-191
  • 48 McClelland JR, Hawkes DJ, Schaeffter T. et al Respiratory motion models: a review. Med Image Anal 2013; 17: 19-42
  • 49 Kamnitsas K, Ledig C, Newcombe VFJ. et al Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis 2017; 36: 61-78
  • 50 Ghafoorian M, Karssemeijer N, Heskes T. et al Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. In, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016: 1414–1417
  • 51 Brosch T, Tang LYW, Yoo Y. et al Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE Transactions on Medical Imaging 2016; 35: 1229-1239
  • 52 Hesamian MH, Jia W, He X. et al Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. JDI 2019; 32: 582-596
  • 53 Morin O, Vallières M, Jochems A. et al A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change. Int J Radiat Oncol Biol Phys 2018; 102: 1074-1082
  • 54 Parmar C, Barry JD, Hosny A. et al Data Analysis Strategies in Medical Imaging. Clin Cancer Res 2018; 24: 3492-3499
  • 55 Xue Y, Chen S, Qin J. et al Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey. Contrast Media. Molecular Imaging 2017; 2017: 9512370
  • 56 Setio AAA, Ciompi F, Litjens G. et al Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Transactions on Medical Imaging 2016; 35: 1160-1169
  • 57 Kawahara J, Hamarneh G. Multi-resolution-Tract CNN with Hybrid Pretrained and Skin-Lesion Trained Layers. Cham: Springer International Publishing; 2016: 164-171
  • 58 Sibille L, Seifert R, Avramovic N. et al (18)F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks. Radiology 2020; 294: 445-452
  • 59 Li R, Zhang W, Suk HI. et al Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv 2014; 17: 305-312
  • 60 Anthimopoulos M, Christodoulidis S, Ebner L. et al Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Transactions on Medical Imaging 2016; 35: 1207-1216
  • 61 Fakoor R, Ladhak F, Nazi A. et al Using deep learning to enhance cancer diagnosis and classification. In, Proceedings of the international conference on machine learning: ACM New York, USA; 2013
  • 62 Codella NC, Nguyen Q-B, Pankanti S. et al Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development 2017; 61: 1-5
  • 63 Yu L, Chen H, Dou Q. et al Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Transactions on Medical Imaging 2017; 36: 994-1004
  • 64 Esteva A, Kuprel B, Novoa RA. et al Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115-118
  • 65 Jafari MH, Nasr-Esfahani E, Karimi N. et al Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma. International Journal of Computer Assisted Radiology and Surgery 2017; 12: 1021-1030
  • 66 Nasr-Esfahani E, Samavi S, Karimi N. et al Melanoma detection by analysis of clinical images using convolutional neural network. In, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016: 1373–1376
  • 67 Cireşan DC, Giusti A, Gambardella LM. et al Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 411-418
  • 68 Sirinukunwattana K, Raza SEA, Tsang Y. et al Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Transactions on Medical Imaging 2016; 35: 1196-1206
  • 69 Wang H, Cruz-Roa A, Basavanhally A. et al Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J Med Imaging (Bellingham) 2014; 1: 034003
  • 70 Cruz-Roa A, Basavanhally A, González F. et al Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In, Medical Imaging 2014: Digital Pathology: International Society for Optics and Photonics; 2014: 904103
  • 71 Roth HR, Lu L, Seff A. et al A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 2014; 17: 520-527
  • 72 Wang D, Khosla A, Gargeya R. et al Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:160605718 2016, DOI:
  • 73 Shin H-C, Roth HR, Gao M. et al Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging 2016; 35: 1285-1298
  • 74 Barbu A, Lu L, Roth H. et al An analysis of robust cost functions for CNN in computer-aided diagnosis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2018; 6: 253-258
  • 75 Roth HR, Lu L, Liu J. et al Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE transactions on medical imaging 2015; 35: 1170-1181
  • 76 Fourcade A, Khonsari RH. Deep learning in medical image analysis: A third eye for doctors. J Stomatol Oral Maxillofac Surg 2019; 120: 279-288
  • 77 Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annual review of biomedical engineering 2017; 19: 221-248
  • 78 Litjens G, Kooi T, Bejnordi BE. et al A survey on deep learning in medical image analysis. Medical image analysis 2017; 42: 60-88
  • 79 Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. ZMedPhys 2019; 29: 102-127
  • 80 Hosny A, Parmar C, Quackenbush J. et al Artificial intelligence in radiology. Nature Reviews Cancer 2018; 18: 500-510
  • 81 Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer 2001; 91: 1615-1635
  • 82 Chen KT, Schürer M, Ouyang J. et al Generalization of deep learning models for ultra-low-count amyloid PET/MRI using transfer learning. European Journal of Nuclear Medicine and Molecular Imaging 2020; 47: 2998-3007
  • 83 Schölkopf B. Causality for machine learning. arXiv preprint arXiv:191110500 2019, DOI:
  • 84 Cypko MA, Stoehr M, Kozniewski M. et al Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment. Int J Comput Assist Radiol Surg 2017; 12: 1959-1970
  • 85 Lucas PJ, van der Gaag LC, Abu-Hanna A. Bayesian networks in biomedicine and health-care. Artif Intell Med 2004; 30: 201-214
  • 86 Maier-Hein L, Eisenmann M, Reinke A. et al Why rankings of biomedical image analysis competitions should be interpreted with care. Nature Communications 2018; 9: 5217
  • 87 Tomaszewski MR, Gillies RJ. The Biological Meaning of Radiomic Features. Radiology 2021; 298: 505-516
  • 88 Elmore JG, Longton GM, Carney PA. et al Diagnostic concordance among pathologists interpreting breast biopsy specimens. Jama 2015; 313: 1122-1132
  • 89 Elton DC. Self-explaining AI as an alternative to interpretable AI. In, International Conference on Artificial General Intelligence: Springer; 2020: 95–106
  • 90 Shukla-Dave A, Obuchowski NA, Chenevert TL. et al Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2019; 49: e101-e121
  • 91 Clark K, Vendt B, Smith K. et al The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26: 1045-1057
  • 92 Bukowski M, Farkas R, Beyan O. et al Implementation of eHealth and AI integrated diagnostics with multidisciplinary digitized data: are we ready from an international perspective?. European Radiology 2020; 30: 5510-5524
  • 93 Commission E. Ethics Guidelines for Trustworthy AI. In; 2019