Tierarztl Prax Ausg G Grosstiere Nutztiere 2023; 51(04): 218-227
DOI: 10.1055/a-2124-1345
Originalartikel

Sonografische Verlaufsuntersuchungen zur Bedeutung der Follikelgröße und Gelbkörpermorphologie bei Milchkühen post inseminationem

Sonographic studies on the significance of follicle size and corpus luteum morphology in dairy cows after insemination
Mario Eggenschwiler
1   Tierarztpraxis Spiegelberg, Halten, Schweiz
,
Beatrice Lejeune
1   Tierarztpraxis Spiegelberg, Halten, Schweiz
,
Rupert Bruckmaier
2   Institut für Veterinär-Physiologie, Vetsuisse-Fakultät Universität Bern, Bern, Schweiz
,
Ulrich Bleul
3   Klinik für Reproduktionsmedizin, Departement für Nutztiere, Vetsuisse-Fakultät Universität Zürich, Schweiz
› Author Affiliations

Zusammenfassung

Gegenstand und Ziel Der Besamungserfolg bei Kühen wird durch viele Faktoren beeinflusst. Das Ziel der vorliegenden Studie war es, Erkenntnisse über die Beziehungen von präovulatorischen Follikeln, Gelbkörpern und deren Hohlräumen sowie einer Trächtigkeit bei Milchkühen unter Feldbedingungen zu gewinnen.

Material und Methoden Die Daten wurden bei 176 laktierenden Milchkühen erhoben, welche zur künstlichen Besamung angemeldet wurden. Die Kühe wurden mittels Sonografie am Tag der Besamung, 24 Stunden nach der Besamung, am Tag 9, am Tag 34 und ab Tag 42 nach Besamung gynäkologisch untersucht. Zudem wurde am Tag der Besamung und am Tag 9 Blut aus der Vena coccygea zur Progesteronbestimmung entnommen.

Ergebnisse In Abhängigkeit des Ergebnisses der Trächtigkeitsuntersuchung konnte bei den untersuchten Milchkühen mit spontanen Ovulationen kein Unterschied zwischen den Größen der Follikel, der Gelbkörper und deren Hohlräumen sowie den Progesteronkonzentrationen 9 Tage nach der Besamung festgestellt werden. Im Gegensatz zu den Gelbkörpern ohne Hohlraum bleibt die Gelbkörperfläche während des Untersuchungszeitraums bei den Gelbkörpern mit Hohlraum konstant, wobei gleichzeitig der Hohlraum massiv an Größe verliert. Zudem wurden Rasseunterschiede in den Gelbkörpergrößen am Tag 34 nachgewiesen.

Schlussfolgerungen Es konnte keine Ursache über die Bildung von Hohlräumen in Gelbkörpern und derer Verbindungen zu vorangegangenen Funktionskörpern gefunden werden.

Klinische Relevanz Sowohl die Veränderungen der Gelbkörpergrößen über die Zeit als auch deren rassebedingte Unterschiede könnten einen Einfluss auf den Besamungserfolg haben.

Abstract

Objective In dairy cattle, numerous factors determine the success of an insemination. The aim of the present study was to generate findings concerning the association between the preovulatory follicles, the corpora lutea with or without cavities and pregnancy in dairy cows under field conditions.

Material and methods Data was obtained from 176 dairy cows scheduled for artificial insemination. The cows were gynecologically examined using sonography at the time of insemination, 24 hours later, on day 9, on day 34 and after day 42 after insemination. Additionally, blood samples were collected from the coccygeal vein at the time of insemination and on day 9 in order to determine blood progesterone level.

Results Depending on the result of the pregnancy test, no difference was detected between the dimensions of the follicles, corpora lutea as well as their cavities and progesterone levels 9 days after insemination in the dairy cows with spontaneous ovulations. In contrast to the corpus luteum without cavity, the surface area of the corpus luteum with cavity remained constant during the study period, while at the same time the cavity decreased in size to a significant degree. In addition, breed differences in corpus luteum sizes were detected on day 34.

Conclusion No cause was detected for the formation of cavities in corpora lutea and there was no link to the follicle from which the corpus luteum developed.

Clinical relevance Both the changes in corpus luteum sizes over time and their breed-related differences could have an impact on insemination outcome.

in Gedenken an Bessy Lejeune




Publication History

Received: 27 January 2023

Accepted: 12 May 2023

Article published online:
11 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Diskin MG, Morris DG. Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim 2008; 43: 260-267 DOI: 10.1111/j.1439-0531.2008.01171.x.
  • 2 Washburn S, Silvia W, Brown C. et al. Trends in reproductive performance in southeastern Holstein and Jersey DHI herds. J Dairy Sci 2002; 85: 244-251
  • 3 Lucy M. ADSA foundation Scholar Award. Reproductive loss in high-production dairy cattle: Where will it end. J Dairy Sci 2001; 1277-1293
  • 4 Butler WR. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livestock Prod Sci 2003; 83: 211-218 DOI: 10.1016/S0301-6226(03)00112-X.
  • 5 Smith M, McIntush E, Smith G. Mechanisms associated with corpus luteum development. J Anim Sci 1994; 72: 1857-1872
  • 6 Beam SW, Butler WR. Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. Bioscientifica Proceedings 1999; 54: 411-424 DOI: 10.1530/biosciprocs.4.032.
  • 7 Sangsritavong S, Combs D, Sartori R. et al. High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17β in dairy cattle. J Dairy Sci 2002; 85: 2831-2842
  • 8 Mann G, Lamming G. The influence of progesterone during early pregnancy in cattle. Reprod Domest Anim 1999; 34: 269-274
  • 9 Kastelic JP, Pierson RA, Ginther OJ. Ultrasonic morphology of corpora lutea and central luteal cavities during the estrous cycle and early pregnancy in heifers. Theriogenology 1990; 34: 487-498 DOI: 10.1016/0093-691x(90)90006-f.
  • 10 Okuda K, Kito S, Sumi N. et al. A study of the central cavity in the bovine corpus luteum. Vet Rec 1988; 123: 180-183
  • 11 Herzog K, Brockhan-Ludemann M, Kaske M. et al. Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size. Theriogenology 2010; 73: 691-697 DOI: 10.1016/j.theriogenology.2009.11.016.
  • 12 Tom J, Pierson R, Adams G. Quantitative echotexture analysis of bovine corpora lutea. Theriogenology 1998; 49: 1345-1352
  • 13 Pierson R, Ginther O. Ultrasonography of the bovine ovary. Theriogenology 1984; 21: 495-504
  • 14 Kähn W, Leidl W. Diagnosis of ovarian function in the cow by sonography. Tierarztl Umsch 1986; 41: 3-12
  • 15 Perez-Marin C. Formation of corpora lutea and central luteal cavities and their relationship with plasma progesterone levels and other metabolic parameters in dairy cattle. Reprod Domest Anim 2009; 44: 384-389 DOI: 10.1111/j.1439-0531.2007.01021.x.
  • 16 Aslan S, Handler J, Arbeiter K. Gelbkörpergrösse, Progesteron-, Vitamin E-und beta-Carotin-Gehalt bei graviden Kühen. Ankara Universitesi Veteriner Fakultesi Dergisi 2003; 50: 195-201
  • 17 Gaebler E, Eigenmann U, Bruckmaier R. et al Schicksal frühzeitig post partum auftretender Ovarialzysten ohne und nach Behandlung mit PRID/PGF oder PRID/PGF+eCG. Tierärztliche Praxis Großtiere 2015; DOI: 10.15653/TPG-150249.
  • 18 Keskin A, Mecitoglu G, Bilen E. et al. The effect of ovulatory follicle size at the time of insemination on pregnancy rate in lactating dairy cows. Turkish J Vet Anim Sci 2016; 40: 68-74 DOI: 10.3906/vet-1506-59.
  • 19 Perry GA, Smith MF, Lucy MC. et al. Relationship between follicle size at insemination and pregnancy success. Proc Natl Acad Sci U S A 2005; 102: 5268-5273 DOI: 10.1073/pnas.0501700102.
  • 20 Perry GA, Smith MF, Roberts AJ. et al. Relationship between size of the ovulatory follicle and pregnancy success in beef heifers1. J Anim Sci 2007; 85: 684-689 DOI: 10.2527/jas.2006-519.
  • 21 Vasconcelos J, Sartori R, Oliveira H. et al. Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology 2001; 56: 307-314
  • 22 Sartori R, Fricke PM, Ferreira JC. et al. Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biol Reprod 2001; 65: 1403-1409
  • 23 Ginther O, Beg M, Donadeu F. et al. Mechanism of follicle deviation in monovular farm species. Anim Reprod Sci 2003; 78: 239-257
  • 24 Gaja A, Kubota C, Kojima T. Early pregnancy diagnosis in Japanese black cows using a novel transrectal ultrasonography protocol. Vet Rec 2009; 164: 659-660
  • 25 Niyas E, Kurien M, Jayakumar C. et al. Sonographic assessment of follicular and luteal characteristics in repeat breeding cattle with prolonged oestrus. Pharm Innov J 2019; 8: 486-491
  • 26 Kähn W. Gelbkörper mit und ohne Hohlraum bei Rindern. Ihr Vorkommen und ihre Entwicklung im Zyklus und während der Frühgravidität. Tierärztliche Praxis Ausgabe G: Grosstiere – Nutztiere 1989; 4: 1-6
  • 27 Lynch CO, Kenny DA, Childs S. et al. The relationship between periovulatory endocrine and follicular activity on corpus luteum size, function, and subsequent embryo survival. Theriogenology 2010; 73: 190-198 DOI: 10.1016/j.theriogenology.2009.08.012.
  • 28 Garcia A, Salaheddine M. Ultrasonic Morphology of the Corpora Lutea and Central Luteal Cavities during Selection of Recipients for Embryo Transfer. Reprod Dom Anim 2000; 35: 113-118 DOI: 10.1046/j.1439-0531.2000.00251.x.
  • 29 Jaśkowski BM, Bostedt H, Gehrke M. et al. Ultrasound Characteristics of the Cavitary Corpus Luteum after Oestrus Synchronization in Heifers in Relation to the Results of Embryo Transfer. Animals 2021; 11 DOI: 10.3390/ani11061706.
  • 30 Jaśkowski BM, Herudzińska M, Gehrke M. et al. The impact of the cavitary corpus luteum on the blood progesterone concentration and pregnancy rate of embryo recipient heifers. Theriogenology 2022; 178: 73-76 DOI: 10.1016/j.theriogenology.2021.11.003.
  • 31 Grygar I, Kudláč E, Doležel R. et al. Volume of luteal tissue and concentration of serum progesterone in cows bearing homogeneous corpus luteum or corpus luteum with cavity. Anim Reprod Sci 1997; 49: 77-82
  • 32 Fields M, Fields P. Morphological characteristics of the bovine corpus luteum during the estrous cycle and pregnancy. Theriogenology 1996; 45: 1295-1325
  • 33 Lei ZM, Chegini N, Rao CV. Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biol Reprod 1991; 44: 1148-1156 DOI: 10.1095/biolreprod44.6.1148.
  • 34 Pierson R, Ginther O. Reliability of diagnostic ultrasonography for identification and measurement of follicles and detecting the corpus luteum in heifers. Theriogenology 1987; 28: 929-936
  • 35 Donaldson L, Hansel W. Histological Study of Bovine Corpora Lutea. J Dairy Sci 1965; 48: 905-909
  • 36 Singh J, Pierson RA, Adams GP. Ultrasound image attributes of the bovine corpus luteum: Structural and functional correlates. J Reprod Fertil 1997; 109: 35-44
  • 37 Kito S, Okuda K, Miyazawa K. et al. Study on the appearance of the cavity in the corpus luteum of cows by using ultrasonic scanning. Theriogenology 1986; 25: 325-333 DOI: 10.1016/0093-691X(86)90068-3.
  • 38 Röskes S, Failing K, Wehrend A. Sonographische Darstellbarkeit des Corpus luteum bei der Milchkuh. Tierarztl Prax Ausg G Grosstiere Nutztiere 2012; 40: 367-373 DOI: 10.1055/s-0038-1623138.
  • 39 Siqueira LG, Torres CA, Amorim LS. et al. Interrelationships among morphology, echotexture, and function of the bovine corpus luteum during the estrous cycle. Anim Reprod Sci 2009; 115: 18-28 DOI: 10.1016/j.anireprosci.2008.11.009.
  • 40 Veronesi M, Gabai G, Battocchio M. et al. Ultrasonographic appearance of tissue is a better indicator of CL function than CL diameter measurement in dairy cows. Theriogenology 2002; 58: 61-68
  • 41 Kayacik V, Salmanoglu MR, Polat B. et al. Evaluation of the corpus luteum size throughout the cycle by ultrasonography and progesterone assay in cows. Turkish J Vet Anim Sci 2006; 29: 1311-1316
  • 42 Rizos D, Scully S, Kelly A. et al. Effects of human chorionic gonadotrophin administration on Day 5 after oestrus on corpus luteum characteristics, circulating progesterone and conceptus elongation in cattle. Reprod Fertil Dev 2012; 24: 472-481 DOI: 10.1071/RD11139.
  • 43 Townson D, Tsang PC, Butler W. et al. Relationship of fertility to ovarian follicular waves before breeding in dairy cows. J Anim Sci 2002; 80: 1053-1058
  • 44 Rajakoski E. The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical, and left-right variations. Eur J Endocrinol 1960; 34: 7-68
  • 45 Austin E, Mihm M, Ryan M. et al. Effect of duration of dominance of the ovulatory follicle on onset of estrus and fertility in heifers. J Anim Sci 1999; 77: 2219-2226
  • 46 Bleach EC, Glencross RG, Knight PG. Association between ovarian follicle development and pregnancy rates in dairy cows undergoing spontaneous oestrous cycles. Reproduction 2004; 127: 621-629 DOI: 10.1530/rep.1.00190.
  • 47 Ginther O, Knopf L, Kastelic J. Temporal associations among ovarian events in cattle during oestrous cycles with two and three follicular waves. Reproduction 1989; 87: 223-230
  • 48 Bridges GA, Mussard ML, Burke CR. et al. Influence of the length of proestrus on fertility and endocrine function in female cattle. Anim Reprod Sci 2010; 117: 208-215 DOI: 10.1016/j.anireprosci.2009.05.002.