Synlett 2024; 35(02): 155-159
DOI: 10.1055/a-2103-9720
synpacts

Synthesis of Ynamides by C(sp)–H Amidation

Xiaolan Xie
a   College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. of China
,
Na Hou
a   College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. of China
,
Yan Lin
b   School of Special Education, Quanzhou Normal University, Quanzhou 362000, P. R. of China
,
Jian Lei
a   College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. of China
› Author Affiliations
Financial support was received from the National Natural Science Foundation of China (21702120), the Natural Science Foundation of Fujian Province (2021J01965, 2018Y0073), Quanzhou City Science and Technology Program of China (2019C021R), and the Program for the Cultivation of Outstanding Young Scientific Talents in Fujian Province University.


Abstract

Ynamides are versatile reactive building blocks in organic chemistry; consequently, synthetic methodologies to fabricate these compounds have received extensive attention. The construction of a C–N bond between an alkyne surrogate and an amide is a powerful and practical way to access ynamides, and has been widely studied. Recently, the amidation of terminal alkynes has emerged as a straightforward alternative. This Synpacts article briefly summarizes the use of C(sp)–H amidation strategies to form ynamides; it also highlights our recent work on the synthesis of ynehydrazides through the copper-catalyzed addition of terminal alkynes to dialkyl azodicarboxylates. Finally, some future directions in this field are outlined.



Publication History

Received: 11 May 2023

Accepted after revision: 31 May 2023

Accepted Manuscript online:
31 May 2023

Article published online:
12 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For key comprehensive reviews, see:
    • 1a DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 1b Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840

      For reviews on the synthesis of ynamides, see:
    • 2a Evano G, Jouvin K, Coste A. Synthesis 2013; 45: 17
    • 2b Cook AM, Wolf C. Tetrahedron Lett. 2015; 56: 2377
    • 2c Evano G, Blanchard N, Compain G, Coste A, Demmer CS, Gati W, Guissart C, Heimburger J, Henry N, Jouvin K, Karthikeyan G, Laouiti A, Lecomte M, Martin-Mingot A, Métayer B, Michelet B, Nitelet A, Theunissen C, Thibaudeau S, Wang J, Zarca M, Zhang C. Chem. Lett. 2016; 45: 574
    • 2d Zhao Y, Tu Y, Cai M, Zhao J. Youji Huaxue 2022; 42: 85; (in Chinese)
    • 2e Mulder JA, Kurtz KC. M, Hsung RP. Synlett 2003; 1379

      For selected reviews, see:
    • 3a Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
    • 3b Duret G, Le Fouler V, Bisseret P, Bizet V, Blanchard N. Eur. J. Org. Chem. 2017; 6816
    • 3c Prabagar B, Ghosh N, Sahoo AK. Synlett 2017; 28: 2539
    • 3d Evano G, Michelet B, Zhang C. C. R. Chim. 2017; 20: 648
    • 3e Dodd RH, Cariou K. Chem. Eur. J. 2018; 24: 2297
    • 3f Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 3g Mahea C, Cariou K. Adv. Synth. Catal. 2020; 362: 4820
    • 3h Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
    • 3i Zhou X, Liang Z, Wang X.-N. Youji Huaxue 2021; 41: 1288 ; (in Chinese)
    • 4a Hamada T, Ye X, Stahl SS. J. Am. Chem. Soc. 2008; 130: 833
    • 4b Jin X, Yamaguchi K, Mizuno N. Chem. Commun. 2012; 48: 4974
    • 4c Laouiti A, Rammah MM, Rammah MB, Marrot J, Couty F, Evano G. Org. Lett. 2012; 14: 6
    • 4d Wang L, Huang H, Priebbenow DL, Pan F.-F, Bolm C. Angew. Chem. Int. Ed. 2013; 52: 3478
  • 5 Souto JA, Becker P, Iglesias Á, Muñiz K. J. Am. Chem. Soc. 2012; 134: 15505
  • 6 Lavernhe R, Torres-Ochoa RO, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2021; 60: 24028
    • 7a Lei J, Gao H, Huang M, Liu X, Mao Y, Xie X. Chem. Commun. 2020; 56: 920
    • 7b Lei J, Xie W, Li J, Wu Y, Xie X. Eur. J. Org. Chem. 2021; 2021: 4364
    • 8a Diana-Rivero R, Halsvik B, Tellado FG, Tejedor D. Org. Lett. 2021; 23: 4078
    • 8b Walker PR, Campbell CD, Suleman A, Carr G, Anderson EA. Angew. Chem. Int. Ed. 2013; 52: 9139
    • 8c Campbell CD, Greenaway RL, Holton OT, Walker PR, Chapman HA, Russell CA, Carr G, Thomson AL, Anderson EA. Chem. Eur. J. 2015; 21: 12627
    • 8d Chen J, Palani V, Hoye TR. J. Am. Chem. Soc. 2016; 138: 4318
    • 8e Zhang C, Blanchard N, Evano G. Synthesis 2023; 55: 272
    • 8f Tuck JR, Tombari RJ, Yardeny N, Olson DE. Org. Lett. 2021; 23: 4305
  • 9 Denonne F, Seiler P, Diederich F. Helv. Chim. Acta 2003; 86: 3096
    • 11a Uemura T, Chatani N. J. Org. Chem. 2005; 70: 8631
    • 11b Kisseljova K, Tšubrik O, Sillard R, Mäeorg S, Mäeorg U. Org. Lett. 2006; 8: 43
    • 11c Gu L, Neo BS, Zhang Y. Org. Lett. 2011; 13: 1872
    • 12a Hay AS. J. Org. Chem. 1962; 27: 3320
    • 12b Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
  • 13 Yang Z, Wang B, Xu X, Wang H, Li X. Youji Huaxue 2015; 35: 207 (in Chinese)
  • 14 Lei J, Sha W, Xie X, Weng W.-T. Org. Lett. 2023; 25: 320
    • 15a Pfaff P, Anderl F, Fink M, Balkenhohl M, Carreira EM. J Am. Chem. Soc. 2021; 143: 14495
    • 15b Fang D, Zhang Z.-Y, Shangguan Z, He Y, Yu C, Li T. J. Am. Chem. Soc. 2021; 143: 14502
    • 15c Huang SJ, Paneccasio V, DiBattista F, Picker D, Wilson G. J. Org. Chem. 1975; 40: 124
  • 16 He C, Chen C, Cheng J, Liu C, Liu W, Li Q, Lei A. Angew. Chem. Int. Ed. 2008; 47: 6414