Synlett 2023; 34(17): 1978-1990
DOI: 10.1055/a-2072-2951
account

Crystal Engineering, Electron Conduction, Molecular Recognition and Reactivity by Chalcogen Bonds in Tetracyanoquinodimethanes Fused with [1,2,5]Chalcogenadiazoles

Takuya Shimajiri
a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
b   Creative Research Institution, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
,
Henri-Pierre Jacquot de Rouville
c   Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
,
Valérie Heitz
c   Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France
,
Tomoyuki Akutagawa
d   Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
,
Takanori Fukushima
e   Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
,
a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
,
a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
› Author Affiliations
This work was supported by Grant-in-Aids from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) (Grant Nos. JP20H02719 and JP20K21184 to T.Su., and JP21H01912 and JP21H05468 to Y.I.) and Japan Science and Technology Agency (JST) CREST (JPMJCR18I4 to T.F.). Additional support was received from the Research Program of ‘Five-star Alliance’, Network Joint Research Center for Materials and Devices (NJRC Mater. & Dev.), MEXT. Y.I. and T.Sh. also acknowledge the Toyota Riken Scholar Program.


Abstract

Studies on a series of tetracyanoquinodimethanes (TCNQs) fused with [1,2,5]chalcogenadiazole rings reveals that chalcogen bonds (ChBs), through E•••N≡C (E = S or Se) contacts, are a decisive factor in determining their crystal structures, with the formation of one- or two-dimensional networks in a lateral direction. For anion-radical salts generated by one-electron reduction, electron conduction occurs in the direction of the network due to intermolecular electronic interactions involving ChBs. Based on the reliable synthon E•••N≡C for crystal engineering, molecular recognition occurs so that solid-state molecular complexes are selectively formed with certain donors, such as xylenes, among their isomers by charge-transfer-type clathrate formation. The inclusion cavity of the clathrate might provide a reaction environment for photoinduced electron transfer in the solid state. The accommodation of multiple conformers of overcrowded ethylene exhibiting thermo/mechanochromism is another example of a novel function that can be realized by ChBs through E•••N≡C contacts. Therefore, these chalcogenadiazolo-TCNQs endowed with the ability to form ChBs are promising materials for the development of novel solid-state functions.

1 Introduction

2 Bis[1,2,5]thiadiazolo-TCNQ (BTDA)

2.1 Chalcogen Bonds in Crystal Structures of BTDA and its Se Analogues

2.2 Electronic Effects of Chalcogen Bonds in Organic Conductors Consisting of BTDA

2.3 Molecular Recognition by Chalcogen Bonds in Molecular Complexes of BTDA

2.4 Single-Crystalline-State Photoreactions of Molecular Complexes of BTDA

2.5 Overcrowded Ethylene Composed of a BTDA Substructure

3 TCNQ Analogues Fused with a [1,2,5]Chalcogenadiazole

3.1 Crystal Structures of Chalcogenadiazolo-TCNQs

3.2 Crystal Structures of Chalcogenadiazolo-TCNNQs: An E•••N≡C Chalcogen Bond versus a Weak C–H•••N≡C Hydrogen Bond

3.3 Molecular Recognition by Chalcogen Bonds in TCNNQ Derivatives

4 Outlook



Publication History

Received: 02 April 2023

Accepted after revision: 24 April 2023

Accepted Manuscript online:
12 April 2023

Article published online:
25 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dunitz JP. Pure Appl. Chem. 1991; 63: 177
    • 2a Huynh H.-T, Jeannin O, Fourmigué M. Chem. Commun. 2017; 53: 8467
    • 2b Zhang Y, Wang W. Crystals 2018; 8: 163
    • 2c Scilabra P, Terraneo G, Resnati G. Acc. Chem. Res. 2019; 52: 1313
    • 3a Desiraju GR. Angew. Chem. Int. Ed. 1995; 34: 2311
    • 3b Nangia A, Desiraju GR. Acta Cryst. 1998; A54: 934
    • 3c Metrangolo P, Neukirch H, Pilati T, Resnati G. Acc. Chem. Res. 2005; 38: 386
    • 3d Desiraju GR. J. Am. Chem. Soc. 2013; 135: 9952

      For recent reviews, see:
    • 4a Lim JY. C, Beer PD. Chem 2018; 4: 731
    • 4b De Vleeschouwer F, Denayer M, Pinter B, Geerlings P, De Proft F. J. Comput. Chem. 2018; 39: 557
    • 4c Vogel L, Wonner P, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 1880
    • 4d Bamberger J, Ostler F, Mancheño OG. ChemCatChem 2019; 11: 5198
    • 4e Biot N, Bonifazi D. Coord. Chem. Rev. 2020; 413: 213243
    • 4f Kolb S, Oliver GA, Werz DB. Angew. Chem. Int. Ed. 2020; 59: 22306
    • 4g Frontera A, Bauzá A. Crystals 2021; 11: 1205
    • 4h Scheiner S. CrystEngComm 2021; 23: 6821
    • 4i Tiekink ER. T. Coord. Chem. Rev. 2022; 457: 215397
    • 4j Tiekink ER. T. CrystEngComm 2023; 25: 9

      For early studies, see:
    • 5a Werz DB, Gleiter R, Rominger F. J. Am. Chem. Soc. 2002; 124: 10638
    • 5b Werz DB, Staeb TH, Benisch C, Rausch BJ, Rominger F, Gleiter R. Org. Lett. 2002; 4: 339
    • 5c Werz DB, Gleiter R, Rominger F. J. Org. Chem. 2002; 67: 4290
    • 5d Werz DB, Gleiter R, Rominger F. J. Org. Chem. 2004; 69: 2945
    • 5e Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH. J. Am. Chem. Soc. 2005; 127: 3184
    • 5f Cozzolino AF, Vargas-Baca I. J. Organomet. Chem. 2007; 692: 2654
    • 6a Wang W, Ji B, Zhang Y. J. Phys. Chem. A 2009; 113: 8132
    • 6b Bauzá A, Quiñonero D, Deyà PM, Frontera A. CrystEngComm 2013; 15: 3137
    • 6c Sánchez-Sanz G, Trujillo C. J. Phys. Chem. A 2018; 122: 1369
    • 7a Alikhani E, Fuster F, Madebene B, Grabowski SJ. Phys. Chem. Chem. Phys. 2014; 16: 2430
    • 7b Del Bene JE, Alkorta I, Elguero J. Chem. Phys. Lett. 2019; 730: 466
    • 7c Zhou B, Gabbaï FP. Organometallics 2021; 40: 2371
    • 7d Haberhauer G, Gleiter R. Angew. Chem. Int. Ed. 2020; 59: 21236
    • 8a Lonchakov AV, Raktin OA, Gristsan NP, Zibarev AV. Molecules 2013; 18: 9850
    • 8b Pushkarevsky NA, Chulanova EA, Shundrin LA, Smolentsev AI, Salnikov GE, Pritchina EA, Genaev AM, Irtegova IG, Bagryanskaya IY, Konchenko SN, Gritsan NP, Beckmann J, Zibarev AV. Chem. Eur. J. 2019; 25: 806
    • 8c Radiush EA, Pritchina EA, Chulanova EA, Dmitriev AA, Bagryanskaya IY, Slawin AM. Z, Woollins JD, Gritsan NP, Zibarev AV, Semenov NA. New J. Chem. 2022; 46: 14490
    • 8d Scheiner S. Phys. Chem. Chem. Phys. 2022; 24: 28944
    • 8e Ishigaki Y, Asai K, Jacquot de Rouville H.-P, Shimajiri T, Hu J, Heitz V, Suzuki T. ChemPlusChem 2022; 87: e202200075
    • 8f Scheiner S. ChemPhysChem 2023; 24: e202200936
    • 8g Chulanova EA, Radiush EA, Semenov NA, Hupf E, Irtegova IG, Kosenkova YS, Bagryanskaya IY, Shundrin LA, Beckmann J, Zibarev AV. ChemPhysChem 2023; 24: e202200876
    • 9a Tsuzuki S, Sato N. J. Phys. Chem. B 2013; 117: 6849
    • 9b Langis-Barsetti S, Maris T, Wuest JD. J. Org. Chem. 2017; 82: 5034
    • 9c Riwar L.-J, Trapp N, Root K, Zenobi R, Diederich F. Angew. Chem. Int. Ed. 2018; 57: 17259
    • 9d Ams MR, Trapp N, Schwab A, Milić JV, Diederich F. Chem. Eur. J. 2019; 25: 323
    • 9e Rahman F.-U, Tzeli D, Petsalakis ID, Teodorakopoulos G, Ballester P, Rebek JJr, Yu Y. J. Am. Chem. Soc. 2020; 142: 5876
    • 9f Nag T, Ovens JS, Bryce DL. Acta Crystallogr., Sect. C 2022; 78: 517
    • 9g Ishigaki Y, Shimomura K, Asai K, Shimajiri T, Akutagawa T, Fukushima T, Suzuki T. Bull. Chem. Soc. Jpn. 2022; 95: 522
    • 10a Klapötke TM, Krumm B, Gálvez-Ruiz JC, Nöth H, Schwab I. Eur. J. Inorg. Chem. 2004; 4764
    • 10b Klapötke TM, Krumm B, Scherr M. Inorg. Chem. 2008; 47: 7025
    • 10c Martínez YB, Pirani LS. R, Erben MF, Boese R, Reuter CG, Vishnevskiy YV, Mitzel NW, Della Védova CO. ChemPhysChem 2016; 17: 1463
    • 10d Martínez YB, Pirani LS. R, Erben MF, Boese R, Reuter CG, Vishnevskiy YV, Mitzel NW, Della Védova CO. J. Mol. Struct. 2017; 1132: 175
    • 10e Previtali V, Sánchez-Sanz G, Trujillo C. ChemPhysChem 2019; 20: 3186
  • 11 Suzuki T, Fujii H, Yamashita Y, Kabuto C, Tanaka S, Harasawa M, Mukai T, Miyashi T. J. Am. Chem. Soc. 1992; 114: 3034
  • 12 Yamashita Y, Suzuki T, Mukai T, Saito G. J. Chem. Soc., Chem. Commun. 1985; 1044
  • 13 Neidlein R, Tran-Viet D, Girene A, Kokkinidis M, Wilckens R, Geserich H, Rüppel W. Chem. Ber. 1982; 115: 2898
  • 14 Lehnert W. Tetrahedron Lett. 1970; 11: 4723
  • 15 Aumüller A, Hünig S. Liebigs. Ann. Chem. 1984; 618
    • 16a Yamashita Y, Suzuki T, Saito G, Mukai T. Chem. Lett. 1986; 15: 715
    • 16b Kobayashi K, Gajurel CL. J. Chem. Soc., Chem. Commun. 1986; 1779
    • 16c Iwasaki F, Toyoda N, Hirota M, Yamazaki N, Yasui M, Kobayashi K. Bull. Chem. Soc. Jpn. 1992; 65: 2173
  • 17 Yamashita Y, Suzuki T, Mukai T. J. Chem. Soc., Chem. Commun. 1987; 16: 1184
  • 18 Hirayama M, Seki A, Yamashita Y, Suzuki T, Miyashi T. J. Chem. Soc., Chem. Commun. 1988; 490
    • 19a Schubert U, Hünig S, Aumüller A. Liebigs Ann. Chem. 1985; 1216
    • 19b Kabuto C, Fukazawa Y, Suzuki T, Yamashita Y, Miyashi T, Mukai T. Tetrahedron Lett. 1986; 27: 925
    • 19c Martín N, Hanack M. J. Chem. Soc., Chem. Commun. 1988; 1522
    • 19d Suzuki T, Ichioka K, Higuchi H, Kawai H, Fujiwara K, Ohkita M, Tsuji T, Takahashi Y. J. Org. Chem. 2005; 70: 5592
    • 19e Gómez R, Seoane C, Segura JL. Chem. Soc. Rev. 2007; 36: 1305
    • 19f Bureš F, Schweizer WB, Boudon C, Gisselbrecht J.-P, Gross M, Diederich F. Eur. J. Org. Chem. 2008; 994
    • 19g Chiba H, Nishida J, Yamashita Y. Chem. Lett. 2012; 41: 482
  • 20 Kabuto C, Suzuki T, Yamashita Y, Mukai T. Chem. Lett. 1986; 15: 1433
  • 21 Kawaguchi S, Shimajiri T, Akutagawa T, Fukushima T, Ishigaki Y, Suzuki T. Chem. Soc. Jpn. under revision
  • 22 Suzuki T, Kabuto C, Yamashita Y, Saito G, Mukai T, Miyashi T. Chem. Lett. 1987; 16: 2285
  • 23 Suzuki T, Kabuto C, Yamashita Y, Mukai T, Miyashi T, Saito G. Bull. Chem. Soc. Jpn. 1988; 61: 483
  • 24 Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier J.-C, Costa RD, Bonifazi D. Angew. Chem. Int. Ed. 2022; 61: e202202137
  • 25 Yamashita Y, Suzuki T, Saito G, Mukai T. Chem. Lett. 1985; 14: 1759
    • 26a Ugawa A, Iwasaki K, Kawamoto A, Yakushi K, Yamashita Y, Suzuki T. Phys. Rev. B 1991; 43: 14718
    • 26b Iwasaki K, Ugawa A, Kawamoto A, Yamashita Y, Yakushi K, Suzuki T, Miyashi T. Bull. Chem. Soc. Jpn. 1992; 65: 3350
  • 27 Suzuki T, Kabuto C, Yamashita Y, Mukai T, Miyashi T, Saito G. Bull. Chem. Soc. Jpn. 1987; 60: 2111
  • 28 Suzuki T, Kabuto C, Yamashita Y, Mukai T, Miyashi T. J. Chem. Soc., Chem. Commun. 1988; 895
  • 29 Suzuki T, Fukushima T, Yamashita Y, Miyashi T. J. Am. Chem. Soc. 1994; 116: 2793
  • 30 For a recent review, see: Hu F, Bi X, Chen X, Pan Q, Zhao Y. Chem. Lett. 2021; 50: 1015
  • 31 Koshima H. J. Mol. Struct. 2000; 552: 111

    • Reviews:
    • 32a Sakamoto M. Chem. Eur. J. 1997; 3: 684
    • 32b Sakamoto M. J. Photochem. Photobiol., C 2006; 7: 183
  • 33 Suzuki T, Fukushima T, Miyashi T, Tsuji T. Angew. Chem. Int. Ed. 1997; 36: 2495
  • 34 Fukushima T, Okazeri N, Miyashi T, Suzuki K, Yamashita Y, Suzuki T. Tetrahedron Lett. 1999; 40: 1175
  • 35 For a review, see: Biedermann PU, Stezowski JJ, Agranat I. Eur. J. Org. Chem. 2001; 15
    • 36a Meyer H. Monatsh. Chem. 1909; 30: 165
    • 36b Meyer H. Ber. Dtsch. Chem. Ges. 1909; 42: 143
    • 37a Hirao Y, Hamamoto Y, Nagamachi N, Kubo T. Phys. Chem. Chem. Phys. 2019; 21: 12209
    • 37b Hamamoto Y, Hirao Y, Kubo T. J. Phys. Chem. Lett. 2021; 12: 4729
    • 38a Biedermann PU, Stezowski JJ, Agranat I. Chem. Eur. J. 2006; 12: 3345
    • 38b Takezawa H, Murase T, Fujita M. J. Am. Chem. Soc. 2012; 134: 17420
    • 38c Matsuo Y, Wang Y, Ueno H, Nakagawa T, Okada H. Angew. Chem. Int. Ed. 2019; 58: 8762
    • 38d Wang Y, Ma Y, Ogumi K, Wang B, Nakagawa T, Fu Y, Matsuo Y. Commun. Chem. 2020; 3: 93
    • 38e Sugawara K, Ono T, Yano Y, Suzuki T, Ishigaki Y. Mater. Chem. Front. 2023; 7: 1591
    • 39a Suzuki T, Yamashita Y, Kabuto C, Miyashi T. J. Chem. Soc., Chem. Commun. 1989; 1102
    • 39b Suzuki T, Yamashita Y, Fukushima T, Miyashi T. Mol. Cryst. Liq. Cryst. 1997; 296: 165
  • 40 Tsubata Y, Suzuki T, Yamashita Y, Mukai T, Miyashi T. Heterocycles 1992; 33: 337
  • 41 Peluso P, Dessì A, Dallocchio R, Sechi B, Gatti C, Chankvetadze B, Mamane V, Weiss R, Pale P, Aubert E, Cossu S. Molecules 2021; 26: 221
    • 42a Suzuki T, Kabuto C, Yamashita Y, Mukai T. Chem. Lett. 1987; 16: 1129
    • 42b Ishigaki Y, Asai K, Shimajiri T, Akutagawa T, Fukushima T, Suzuki T. Org. Mater. 2021; 3: 90
  • 43 Shigaki Y, Asai K, Jacquot de Rouville H.-P, Shimajiri T, Heitz V, Fujii-Shinomiya H, Suzuki T. Eur. J. Org. Chem. 2021; 990
  • 44 Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. Proc. Nat. Acad. Sci. U. S. A. 2004; 101: 9966
    • 45a Kim SJ. Appl. Chem. Eng. 2018; 29: 799
    • 45b Ban H, Cheng Y, Wang L, Li X, Zhou X, Zhang X. Chem. Eng. Technol. 2019; 42: 1188
  • 46 Fujii S, Koike M, Nishino T, Shoji Y, Suzuki T, Fukushima T, Kiguchi M. J. Am. Chem. Soc. 2019; 114: 18544
  • 47 Murase R, Hudson TA, Aldershof TS, Nguyen KV, Gluschke JG, Kenny EP, Zhou X, Wang T, van Koeverden MP, Powell BJ, Micolich AP, Abrahams BF, D’Alessandro DM. J. Am. Chem. Soc. 2022; 144: 13242
  • 48 Ishigaki Y, Asai K, Shimajiri T, Suzuki T. Chem. Lett. 2021; 50: 1184