Synthesis 2023; 55(14): 2118-2127
DOI: 10.1055/a-2050-4967
short review
Special Issue Honoring Prof. Guoqiang Lin’s Contributions to Organic Chemistry

Recent Advances in Asymmetric [1,2]-Stevens-Type Rearrangement via Metal Carbenes

Chong-Yang Shi
a   College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
,
Bo Zhou
b   Key Laboratory for Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Ming-Yu Teng
a   College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
,
Long-Wu Ye
a   College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. of China
b   Key Laboratory for Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (22125108, 92056104), Yunnan Normal University, and Applied Basic Research Projects of Yunnan Province (202101AT070217).


Abstract

The [1,2]-Stevens rearrangement is a widely used transformation in synthetic organic chemistry. However, enantioselective versions are relatively limited and most of them rely on substrate-induced methodologies. In recent years, metal carbene chemistry has been extensively investigated, and the related asymmetric [1,2]-Stevens rearrangement has experienced rapid development by employing ylide intermediates generated from the reaction of metal carbenes with heteroatoms. This review summarizes recent advances in the asymmetric [1,2]-Stevens-type rearrangement via metal carbenes by presenting their product diversity, selectivity, and mechanistic rationale, which is organized based on the mode of chirality control.

1 Introduction

2 Substrate-Induced Asymmetric [1,2]-Stevens-Type Rearrangement

3 Catalyst-Controlled Asymmetric [1,2]-Stevens-Type Rearrangement

4 Conclusion and Outlook



Publication History

Received: 16 January 2023

Accepted after revision: 08 March 2023

Accepted Manuscript online:
08 March 2023

Article published online:
12 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
    • 2a Markó IE. The Stevens and Related Rearrangements . In Comprehensive Organic Synthesis, Vol. 3. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 913
    • 2b Vanecko JA, Wan H, West FG. Tetrahedron 2006; 62: 1043
    • 2c Bach R, Harthong S, Lacour J. Nitrogen- and Sulfur-Based Stevens and Related Rearrangements . In Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Knochel P, Molander GA. Pergamon Press; Oxford: 2014: 992
    • 2d Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 2e Empel C, Jana S, Koenigs RM. Synthesis 2021; 53: 4567
    • 3a Stevens TS. J. Chem. Soc. 1930; 2107
    • 3b Hauser CR, Kantor SW. J. Am. Chem. Soc. 1951; 73: 1437
    • 3c Johnstone RA. W, Stevens TS. J. Chem. Soc. 1955; 4487
    • 3d Ollis WD, Rey M, Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1983; 1009
    • 3e Li AH, Dai LX. Chem. Rev. 1997; 97: 2341
  • 4 Vedejs E, West FG. Chem. Rev. 1986; 86: 941
    • 5a Gawley RE, Zhang Q, Campagna S. J. Am. Chem. Soc. 1995; 117: 11817
    • 5b Gawley RE, Moon K. Org. Lett. 2007; 9: 3093
    • 6a Campbell A, Houston AH. J, Kenyon J. J. Chem. Soc. 1947; 93
    • 6b Joshua H, Gans R, Mislow K. J. Am. Chem. Soc. 1968; 90: 4884
    • 6c Glaeske KW, West FG. Org. Lett. 1999; 1: 31
    • 6d Harada M, Nakai T, Tomooka K. Synlett 2004; 365
    • 6e Gonçalves-Farbos M, Vial L, Lacour J. Chem. Commun. 2008; 829
    • 6f Tayama E, Otoyama S, Tanaka H. Tetrahedron: Asymmetry 2009; 20: 2600
    • 6g Tuzina P, Somfai P. Org. Lett. 2009; 11: 919
    • 6h Palombi L. Catal. Commun. 2011; 12: 485
  • 7 Tomooka K, Sakamaki J, Harada M, Wada R. Synlett 2008; 683
    • 8a Takaya J, Udagawa S, Kusama H, Iwasawa N. Angew. Chem. Int. Ed. 2008; 47: 4906
    • 8b González-Gómez Á, Domínguez G, Pérez-Castells J. Tetrahedron 2009; 65: 3378
  • 9 Han L, Tian SK. Molecular Rearrangements Triggered by Arynes. In Modern Aryne Chemistry. Biju AT. Wiley-VCH; Hoboken: 2021. 267
  • 10 Soheili A, Tambar UK. J. Am. Chem. Soc. 2011; 133: 12956

    • For recent selected reviews on carbene chemistry, see:
    • 11a Transition Metal-Catalyzed Carbene Transformations . Wang J, Che C.-M, Doyle MP. Wiley-VCH; Weinheim: 2022
    • 11b Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2021; 121: 9039
    • 11c Li L, Luo W.-F, Ye L.-W. Synlett 2021; 32: 1303
    • 11d Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 11e Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 11f Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 11g Padwa A. Chem. Soc. Rev. 2009; 38: 3072
    • 11h Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
    • 12a Padwa A, Hornbuckle SF. Chem. Rev. 1991; 91: 263
    • 12b Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 12c Ford A, Maguire R. C–C Bond Formation (Metal-Carbene Catalyzed) . In Comprehensive Chirality, Vol. 4. Carreira EM, Yamamoto H. Elsevier Science; Amsterdam: 2012. 132
    • 12d Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 12e Hock KJ, Koenigs RM. Angew. Chem. Int. Ed. 2017; 56: 13566
    • 13a Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4675
    • 13b Tomioka H, Yamada S, Hirai K. J. Org. Chem. 1995; 60: 1298
    • 13c Feldman KS, Wrobleski ML. Org. Lett. 2000; 2: 2603
    • 13d Xu B, Gartman JA, Tambar UK. Tetrahedron 2017; 73: 4150
    • 13e Lin R, Cao L, West FG. Org. Lett. 2017; 19: 552
    • 13f Xu X, Li C, Xiong M, Tao Z, Pan Y. Chem. Commun. 2017; 53: 6219
    • 13g Huang Y, Li X, Wang X, Yu Y, Zheng J, Wu W, Jiang H. Chem. Sci. 2017; 8: 7047
    • 13h Hashimoto Y, Kono M, Harada S, Nemoto T. Chem. Pharm. Bull. 2018; 66: 1041
    • 13i Yang Z, Guo Y, Koenigs RM. Chem. Commun. 2019; 55: 8410
    • 13j Jana S, Koenigs RM. Org. Lett. 2019; 21: 3653
    • 13k Jana S, Yang Z, Pei C, Xu X, Koenigs RM. Chem. Sci. 2019; 10: 10129
    • 13l Yang Z, Guo Y, Koenigs RM. Chem. Eur. J. 2019; 25: 6703
    • 13m Cai W, Wu J, Zhang H, Jalani HB, Li G, Lu H. J. Org. Chem. 2019; 84: 10877
    • 13n Guranova NI, Dar’in D, Kantion G, Novikov AS, Bakulina O, Krasavin M. J. Org. Chem. 2019; 84: 4534
    • 13o Dar’in D, Kantion G, Bakulina O, Inyutina A, Chupakhin E, Krasavin M. J. Org. Chem. 2020; 85: 15586
    • 13p Nair V, Kojasoy V, Laconsay C, Kong WY, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2021; 143: 9016
    • 14a West FG, Naidu BN. J. Am. Chem. Soc. 1994; 116: 8420
    • 14b West FG, Naidu BN. Tetrahedron 1997; 53: 16565
  • 15 Vanecko JA, West FG. Org. Lett. 2002; 4: 2813
  • 16 Muroni D, Saba A, Culeddu N. Tetrahedron: Asymmetry 2004; 15: 2609
  • 17 Sharma A, Guénée L, Naubron JV, Lacour J. Angew. Chem. Int. Ed. 2011; 50: 3677
  • 18 Sharma A, Besnard C, Guénée L, Lacour J. Org. Biomol. Chem. 2012; 10: 966
  • 19 Pujari SA, Guénée L, Lacour J. Org. Lett. 2013; 15: 3930
    • 20a Raskildina GZ, Zlotsky SS, Sultanova RM. Macroheterocycles 2018; 11: 166
    • 20b Murphy GK, Stewart C, West FG. Tetrahedron 2013; 69: 2667
    • 21a Kirmse W, Chiem PV. Tetrahedron Lett. 1985; 26: 197
    • 21b Roskamp EJ, Johnson CR. J. Am. Chem. Soc. 1986; 108: 6062
    • 21c Kim GC, Kang SW, Kim SN. Tetrahedron Lett. 1993; 34: 7627
    • 21d West FG, Eberlein TH, Tester RW. J. Chem. Soc., Perkin Trans. 1 1993; 2857
  • 22 Skrobo B, Deska J. Org. Lett. 2013; 15: 5998
  • 23 Skrobo B, Schlçrer NE, Neudçrfl J.-M, Deska J. Chem. Eur. J. 2018; 24: 3209
  • 24 Hodgson DM, Pierard FY. T. M, Stupple PA. Chem. Soc. Rev. 2001; 30: 50
  • 25 Hong K, Zhou S, Hu W, Xu X. Org. Chem. Front. 2020; 7: 1327
  • 26 Miller DC, Lal RG, Marchetti LA, Arnold FH. J. Am. Chem. Soc. 2022; 144: 4739
  • 27 Nozaki H, Takaya H, Moriuti S, Noyori R. Tetrahedron 1968; 24: 3655
    • 28a Ito K, Katsuki T. Chem. Lett. 1994; 1857
    • 28b Ito K, Yoshitake M, Katsuki T. Heterocycles 1996; 42: 305
  • 29 Ito K, Yoshitake M, Katsuki T. Tetrahedron 1996; 52: 3905
  • 30 Lo MM.-C, Fu GC. Tetrahedron 2001; 57: 2621
  • 31 Doyle MP, Ene DG, Forbes DC, Tedrow JS. Tetrahedron Lett. 1997; 38: 4367
    • 32a Kitagaki S, Yanamoto Y, Tsutsui H, Anada M, Nakajima M, Hashimoto S. Tetrahedron Lett. 2001; 42: 6361
    • 32b Clark JS, Fretwell M, Whitlock GA, Burns CJ, Fox DN. A. Tetrahedron Lett. 1998; 39: 97
  • 33 Hong F.-L, Shi C.-Y, Hong P, Zhai T.-Y, Zhu X.-Q, Lu X, Ye L.-W. Angew. Chem. Int. Ed. 2022; 61: e202115554

    • For recent reviews on ynamide reactivity, see:
    • 34a Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
    • 34b Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
    • 34c Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 34d Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
    • 34e Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
    • 34f Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
    • 34g Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
    • 34h Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
  • 35 Thomson T, Stevens TS. J. Chem. Soc. 1932; 69
  • 36 Qu J.-P, Xu Z.-H, Zhou J, Cao C.-L, Sun X.-L, Dai L.-X, Tang Y. Adv. Synth. Catal. 2009; 351: 308
  • 37 Yuan H, Thirupathi N, Gao H, Tung C.-H, Xu Z. Org. Chem. Front. 2018; 5: 1371
  • 38 Hu L, Li J, Zhang Y, Feng X, Liu X. Chem. Sci. 2022; 13: 4103

    • For recent reviews on the selenonium ylide, see:
    • 39a Drabowicz J, Rzewnicka A, Żurawiński R. Molecules 2020; 25: 2420
    • 39b Nair VN, Tambar UK. Org. Biomol. Chem. 2022; 20: 3427

    • For a recent non-enantioselective example on the selenonium ylide, see:
    • 39c Jana S, Aseeva P, Koenigs RM. Chem. Commun. 2019; 55: 12825
  • 40 For a recent non-enantioselective example on the iodonium ylide, see: Xu B, Tambar UK. J. Am. Chem. Soc. 2016; 138: 12073
    • 41a Li F, Pei C, Koenigs RM. Chem. Sci. 2021; 12: 6362
    • 41b Laconsay CJ, Tantillo DJ. ACS Catal. 2021; 11: 829